Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10126-10131    https://doi.org/10.11896/cldb.19050036
  金属与金属基复合材料 |
冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响
邓杰1, 孙新军2, 张涛3, 宋新莉1, 梁小凯2, 马玉喜1, 向志东1
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 钢铁研究总院工程结构用钢研究所,北京 100081
3 鞍钢集团钢铁研究院,鞍山 114009
Effect of Cooling Rate on Microstructure and Hardness of Medium Manganese Martensitic Wear-resistant Steel
DENG Jie1, SUN Xinjun2, ZHANG Tao3, SONG Xinli1, LIANG Xiaokai2, MA Yuxi1, XIANG Zhidong1
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
3 Iron and Steel Research Institute, Ansteel Group, Anshan 114009, China
下载:  全 文 ( PDF ) ( 7048KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 矿山机械用构件因服役环境恶劣,常常出现磨损失效。低合金耐磨钢制造的构件采用淬火加低温回火得到单一马氏体组织,其硬度较高,但韧性差。目前,采用含有一定Si含量的中锰耐磨钢构件,通过工艺参数的有效控制可以得到马氏体加残余奥氏体(M+RA)复相组织,从而保证矿山机械构件在具有一定硬度的同时还具有一定的塑韧性。利用Gleebel3800热模拟机、金相显微镜(OM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)技术、X射线衍射(XRD)仪及维氏硬度计等手段,研究了不同冷却速率对中锰马氏体耐磨钢的组织演变、残余奥氏体含量、形貌和维氏硬度的影响。结果表明,冷却速率由30 ℃/s降低至0.05 ℃/s时,试验钢均获得马氏体+残余奥氏体组织。当试验钢以非常缓慢的速率(0.05 ℃/s)冷却时,过饱和马氏体中的碳充分配分至残余奥氏体中,增加残余奥氏体的稳定性,因而室温下残余奥氏体体积分数较高(~12%),残余奥氏体呈现膜状和明显的块状形貌。而当冷却速率较快(10 ℃/s)时,残余奥氏体体积分数低于6%,残余奥氏体呈薄膜状和细小块状。另外,不同冷却速率微观结构演变及残余奥氏体体积分数不同,导致试验钢硬度发生显著变化。冷却速率缓慢时,碳的固溶强化及马氏体位错强化作用减弱,软质相残余奥氏体体积分数增加,使得试验钢硬度降至最低值HV508。当冷却速率大于10 ℃/s时,过饱和马氏体中碳的固溶强化及其位错亚结构强化作用使得硬度值较高。中锰耐磨钢的维氏硬度y与冷却速率x之间符合双指数衰减关系:y=-42.23exp(-x/4.75)-38.27exp(-x/0.17)+573.76。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓杰
孙新军
张涛
宋新莉
梁小凯
马玉喜
向志东
关键词:  冷却速率  残余奥氏体  碳配分  维氏硬度    
Abstract: The wear failure often occurs because of the bad service environment of mining machinery components. The single martensite structure of the components made of low alloy wear resistant steel is obtained by quenching and low temperature tempering. Their hardness is high, but the toughness is poor. At present, the martensite and residual austenite (M and RA) multiphase structure of medium manganese wear-resistant steel can be obtained by effectively controlling the process parameters, so as to ensure that the mining mechanical components have a certain hardness and at the same time ensure a certain degree of plastic toughness.
The evolution of microstructure and the volume fraction and morphology of residual austenite and Vickers hardness for medium manganese wear-resistant steel were studied by OM, TEM, EBSD, XRD and Vickers-hardness test. The results showed that only martensite and different volume fraction of residual austenite was obtained with the cooling rate ranging from 30 ℃/s to 0.05 ℃/s. When the cooling rate was 0.05 ℃/s, the carbon partitioning was adequate and 12.01% residual austenite was obtained. The morphology of residual austenite was filmy or obvious blocky. With increasing the cooling rate to 10 ℃/s, less than 6% of residual austenite was retained at room temperature and the residual auste-nite was in the shape of film or small block. In addition, the hardness of the tested steel changed with the cooling rate, because both the microstructure evolution and the residual austenite volume fraction were different at different cooling rate. When the cooling rate was very slow, the carbon solid solution strengthening and martensite dislocation strengthening were weak, and the fraction of residual austenite was high. They minimized the hardness of the tested steel to HV508. The Vickers hardness of the steel was very high when the cooling rate was faster than 10 ℃/s, due to the solid solution strengthening of carbon and dislocation strengthening. The Vickers hardness y of the tested steel and cooling rates x accord with a double exponential decay relationship: y=-42.23exp(-x/4.75)-38.27exp(-x/0.17)+573.76.
Key words:  continuous cooling rate    residual austenite    carbon partitioning    Vickers hardness
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TG142  
基金资助: 国家重点研发计划项目(2017YFB0305100)
通讯作者:  宋新莉,1973年生,博士,现为武汉科技大学材料与冶金学院金属材料工程专业教授,2014—2015年在加拿大多伦多大学作访问学者。主要研究领域为高性能钢铁材料的组织调控与强韧化,材料的疲劳与磨损失效。xlsong@wust.edu.cn   
作者简介:  邓杰,1993年生,2015年毕业于武汉科技大学冶金工程专业,获学士学位。2017年至今攻读武汉科技大学材料科学与工程专业硕士学位。主要研究方向为配分工艺下钢铁材料的强韧化及耐磨性能改善。
引用本文:    
邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
DENG Jie, SUN Xinjun, ZHANG Tao, SONG Xinli, LIANG Xiaokai, MA Yuxi, XIANG Zhidong. Effect of Cooling Rate on Microstructure and Hardness of Medium Manganese Martensitic Wear-resistant Steel. Materials Reports, 2020, 34(10): 10126-10131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050036  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10126
1 Guo H, Liu Y, Li W. Materials Reports A:Review Papers, 2014, 28(4), 101(in Chinese).
郭红, 刘英, 李卫. 材料导报:综述篇, 2014, 28(4), 101.
2 Song H Y, Li C M, Lan L Y, et al. Journal of Iron and Steel Research, International, 2013, 20(8), 72.
3 Ju B, Wu H B, Tang D, et al. Acta Metallurgica Sinica, 2014, 50(9), 1056(in Chinese).
巨彪, 武会宾, 唐荻, 等. 金属学报, 2014, 50(9), 1056.
4 Jha A K, Prasad B K, Modi O P, et al. Wear, 2003, 254(1-2), 120.
5 Xu X J, Xu W, Ederveen F H, et al. Wear, 2013, 301(1-2), 83.
6 Ojala N, Valtonen K, Heino V, et al. Wear, 2014, 317(1-2), 225.
7 Liu X D. Development of low alloy martensite abrasion resistant steel with high strength and toughness. Master's thesis, Shandong University, China, 2016(in Chinese).
刘晓东. 高强韧低合金马氏体耐磨钢的研制. 硕士学位论文, 山东大学, 2016.
8 Park H S, Han J C, Lim N S, et al. Materials Science and Engineering A, 2015, 627, 262.
9 Wang Y, Zhang K, Guo Z D, et al. Acta Metallurgica Sinica, 2012, 48(6), 641(in Chinese).
王颖, 张柯, 郭正洪, 等. 金属学报, 2012, 48(6), 641.
10 Huang L, Deng X T, Liu J, et al. Acta Metallurgica Sinica, 2017, 53(3), 316(in Chinese).
黄龙, 邓想涛, 邓佳, 等. 金属学报, 2017, 53(3), 316.
11 He B G, Liu L, Huang M X. Metallurgical and Materials Transactions A, 2018, 49, 3617.
12 Yang J L, Jiang Y K, Gu J F, et al. Acta Metallurgica Sinica, 2018, 54(1), 29(in Chinese).
杨继兰, 蒋元凯, 顾剑锋, 等. 金属学报, 2018, 54(1), 29.
13 Haiko O, Somani M, Porter D, et al. Wear, 2018, 400-401, 26.
14 Santofimia M J, Nguyen-Minh T, Zhao L, et al. Materials Science and Engineering A, 2010, 527, 6429.
15 Diego-Calderon I, Sabirov I, Molina-Aldaregiua J M, et al. Materials Science and Engineering A, 2016, 657, 136.
16 Peng F, Xu Y B, Gu X L, et al. Materials Science and Engineering A, 2018, 723, 247.
17 Li Y J, Kang J, Zhang W N, et al. Materials Science and Engineering A, 2018, 720, 185.
18 Hu B Q. Metal heat treatment principles and process,China Railway Publishing House, China, 2017(in Chinese).
胡保全. 金属热处理原理与工艺, 中国铁道出版社, 2017.
19 Wu R, Liu J. Comprehensive experimental guidance book for practical teaching of metal materials engineering, Metallurgical Industry Press, China, 2008(in Chinese).
吴润, 刘静. 金属材料工程实践教学综合实验指导书, 冶金工业出版社, 2008.
20 Kim K, Lee S J. Materials Science and Engineering A, 2017, 698, 183.
21 Cheng L, Böttger A, Keijser T H, et al. Scripta Metallurgica et Materialia, 1990, 24(3), 511.
22 Dijk N H, Butt A M, Zhao L, et al. Acta Materialia, 2005, 53, 5442.
23 Li H Y, Li Y H, Wang X F, et al. Journal of Central South University, 2013, 44(7), 2704(in Chinese).
李红英, 李阳华, 王晓峰, 等. 中南大学学报, 2013, 44(7), 2704.
24 Zhao X M, Kang Y L, Han Q H. Journal of iron and steel research, international, 2011,18, 299.
25 Zhang C L, Cai D Y, Wang Y H, et al. Materials characterization, 2008, 59, 1641.
26 Amit K B, Olson G B. Scripta Materialia, 2018, 147, 7.
27 Hernandez V H B, Nayak S S, Zhou Y. Metallurgical and Materials Transactions A, 2011, 42(10), 3118.
28 Jang J H, Kim I G, Bhadeshia H K D H. Scipta Materialia, 2010, 63, 122.
29 Seo E J, Cho L, De Cooman B C. Metallurgical and Materials Transantions A, 2015, 46(1), 30.
30 Kim B, Sietsma J, Santofimia M J. Materials and Design, 2017, 127, 344.
31 Ariza E A, Poplawsky J, Guo W, et al. Metallurgical and Materials Transactions A, 2018, 49, 4822.
32 Yan S, Liu X H, Liu W J, et al. Materials Science and Engineering A, 2017, 684, 265.
[1] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
[2] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[3] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[4] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[5] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[6] 李建, 贾涓, 宋新莉, 孙新军, 范丽霞, 马玉喜, 梁小凯. 一步配分工艺对低合金耐磨钢组织性能的影响[J]. 材料导报, 2019, 33(18): 3113-3118.
[7] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[8] 李辉, 陈家泳, 段晓鸽, 江海涛. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 《材料导报》期刊社, 2018, 32(4): 611-615.
[9] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[10] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[11] 丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 《材料导报》期刊社, 2017, 31(24): 150-155.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed