Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3113-3118    https://doi.org/10.11896/cldb.18070167
  金属与金属基复合材料 |
一步配分工艺对低合金耐磨钢组织性能的影响
李建1, 贾涓1, 宋新莉1, 孙新军2, 范丽霞1, 马玉喜1, 梁小凯2
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 钢铁研究总院工程结构用钢研究所,北京 100081
Effect of One-step Partitioning Process on Microstructure and Properties of Low Alloy Wear-resistant Steel
LI Jian1, JIA Juan1, SONG Xinli1, SUN Xinjun2, FAN Lixia1, MA Yuxi1, LIANG Xiaokai2
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
2 Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081
下载:  全 文 ( PDF ) ( 4049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 借助扫描电子显微镜(SEM)、X射线衍射(XRD)仪和透射电子显微镜(TEM)研究了低合金耐磨钢的显微组织、性能及残余奥氏体含量、形态随配分工艺的变化情况。结果表明,经不同工艺配分处理后实验钢的显微组织为一次马氏体、残余奥氏体及二次马氏体,残余奥氏体分为分布于马氏体板条间的薄膜状残余奥氏体(宽度约为100 nm)和分布于晶界处的块状残余奥氏体(尺寸约为300~400 nm)两种。随配分温度的升高,一次马氏体含量明显减少,二次马氏体含量越来越多,组织也越来越粗大,残余奥氏体含量与残余奥氏体中碳含量均先增加后减少;随配分时间的延长,马氏体边界变得模糊,析出物有所增加,残余奥氏体含量先增加后减少,且残余奥氏体含量越高,材料的塑韧性越好。当配分温度为235 ℃、配分时间为30 min时,得到的残余奥氏体体积分数最高,为8.1%;其含碳量为1.02%(质量分数),实验钢硬度为52.3HRC,延伸率为12%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建
贾涓
宋新莉
孙新军
范丽霞
马玉喜
梁小凯
关键词:  低合金耐磨钢  配分工艺  残余奥氏体  塑韧性    
Abstract: Effect of one-step partitioning process on the microstructure evolutions, mechanical properties, retained austenite content and morphology of a low alloy wear-resistant steel were studied by means of the scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The results indicate that the microstructure is consisted of the lath primary martensite, block fresh martensite and retained austenite in the wear-resistant steel after partitioning treatment, the retained austenite is emerged in the form of thin film between martensite laths (width about 100 nm) and block along the grain boundaries (about 300—400 nm in size). As the increase of partitioning tempe-rature, the content of initial martensite decreases and the fresh martensite increases gradually, the content of retained austenite and the carbon content of the steel increase first and then decrease; as the increase of partitioning time, the martensite boundary becomes blurred and the precipitates increase, the content of retained austenite also increase first and then decrease, and the higher the retained austenite content, the better the ductility of the material. When partitioning temperature is 235 ℃ and time is 30 min, the content of retained austenite is highest, 8.1vol%; the carbon content is 1.02wt%, the hardness of the steel is 52.3HRC and the elongation is 12%.
Key words:  low alloy wear-resistant steel    partitioning process    retained austenite    plastic toughness
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG156.1  
基金资助: 国家重点研发计划“重点基础材料技术提升与产业化”重点专项(2017YFB0305100)
通讯作者:  queenyjj@hotmail.com   
作者简介:  李建,2016年毕业于武汉科技大学,获得工学学士学位。现为武汉科技大学材料与冶金学院硕士研究生,在贾涓教授的指导下进行研究。目前主要研究领域为材料的强韧化。
贾涓,2007年3月毕业于北京科技大学,获材料学工学博士学位,现为武汉科技大学金属材料工程系教师,教授。主要研究方向为材料强韧化及各向异性。
引用本文:    
李建, 贾涓, 宋新莉, 孙新军, 范丽霞, 马玉喜, 梁小凯. 一步配分工艺对低合金耐磨钢组织性能的影响[J]. 材料导报, 2019, 33(18): 3113-3118.
LI Jian, JIA Juan, SONG Xinli, SUN Xinjun, FAN Lixia, MA Yuxi, LIANG Xiaokai. Effect of One-step Partitioning Process on Microstructure and Properties of Low Alloy Wear-resistant Steel. Materials Reports, 2019, 33(18): 3113-3118.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070167  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3113
[1] Ding H F, Cui F M, Du X D. Materials Science & Engineering A, 2006, 421(1-2), 161.
[2] Tan X Y. Development and industrialization of high strength low-alloy wear resistant steel, Metallurgical Industry Press, China, 2014(in Chinese).谭学余. 高强度低合金耐磨钢研制开发与工业化应用, 冶金工业出版社, 2014.
[3] Ding L P. Study of Q & P heat treatment on microstructure and properties of low alloy wear resistant steel. Master’s Thesis, Zhengzhou University, China, 2013(in Chinese).丁丽平. Q&P热处理工艺对低合金耐磨钢组织和性能的影响研究. 硕士学位论文, 郑州大学, 2013.
[4] Matlock D K, Brutigam V E, Speer J G. Materials Science Forum, 2003, 426-432, 1089.
[5] Speer J G, Moor E D, Clarke A J. Materials Science & Technology, 2015, 31(1), 3.
[6] Bagliani E P, Santofimia M J, Zhao L, et al. Materials Science & Engineering A, 2013, 559, 486.
[7] Karam A M, Zarei H A, Abedi H R, et al. Materials Science & Engineering A, 2016, 651, 233.
[8] Toji Y, Miyamoto G, Raabe D. Acta Materialia, 2015, 86(86), 137.
[9] Toji Y, Matsuda H, Herbig M, et al. Acta Materialia, 2014, 65(6), 215.
[10] Thomas G A, Speer J G, Thompson S W. Transactions of the Iron & Steel Institute of Japan, 2015, 54(12), 2900.
[11] Jiang H T, Tang D, Mi Z L, et al. Materials Science & Technology, 2011, 19(1), 99(in Chinese).江海涛, 唐荻, 米振莉, 等. 材料科学与工艺, 2011, 19(1), 99.
[12] Wang C Y, Shi J, Cao W Q, et al. Acta Metallurgica Sinica, 2011(6), 720(in Chinese).王存宇, 时捷, 曹文全, 等. 金属学报, 2011(6), 720.
[13] Li Z C. Journal of Liaoning Technical University, 1998(3), 293(in Chinese).李智超. 辽宁工程技术大学学报, 1998(3), 293.
[14] Liu Y. Study of Q & P process on microstructures and properties for 20Si2Mn. Master’s Thesis, Changchun University of Technology, China, 2015(in Chinese).刘洋. Q&P处理20Si2Mn钢的组织性能研究. 硕士学位论文, 长春工业大学, 2015.
[15] Lu B. Effect of Q & P process on microstructures and mechanical properties for steel 60Si2MnNiMo. Master’s Thesis, Yanshan University, China, 2015(in Chinese).卢宝. Q&P工艺对60Si2MnNiMo钢显微组织及力学性能的影响. 硕士学位论文, 燕山大学, 2015.
[16] Li H, Mi Z L, Zhang H, et al. Materials Review B:Research Papers, 2017, 31(2), 83(in Chinese).李辉, 米振莉, 张华, 等. 材料导报:研究篇, 2017, 31(2), 83.
[17] Wang Y. Mechanism of ductility enhancement of an advanced high strength-ductility Q-P-T steel and its dynamic mechanical properties. Master’s Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese).王颖. 先进高强塑性Q-P-T钢增塑机制及其动态力学性能. 硕士学位论文, 上海交通大学, 2013.
[1] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[2] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[3] 李辉, 陈家泳, 段晓鸽, 江海涛. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 《材料导报》期刊社, 2018, 32(4): 611-615.
[4] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed