Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12076-12082    https://doi.org/10.11896/cldb.19060026
  金属与金属基复合材料 |
高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为
热焱1, 邱克强2, 李东和1, 丁韧1, 王梅1, 徐慧1, 徐颖1
1 辽宁省交通高等专科学校机电工程系,沈阳 110122
2 沈阳工业大学材料科学与工程学院,沈阳 110870
Investigation on Creep Behavior of Mg-5Al-2Sn-5Ca Magnesium Alloy with High Hardness in As-cast and After Heat-treatment
RE Yan1, QIU Keqiang2, LI Donghe1, DING Ren1, WANG Mei1, XU Hui1, XU Ying1
1 Department of Mechanical and Electronic Engineering, College of Liaoning Provincial Communications, Shenyang 110122, China
2 School of Materials Science and Engineering, University of Technology Shenyang, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 7890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作借鉴MRI230D合金的设计思路,通过添加Al、Ca、Sn等元素,采用普通铸造工艺制备了一种新型的Mg-5Al-2Sn-5Ca镁合金。使用XRD衍射仪、扫描电子显微镜对样品进行表征,采用图像处理显微维氏硬度计和蠕变试验机测试合金在铸态与热处理后的力学性能。研究结果表明:该合金由α-Mg、Al2Ca、Mg2Ca、CaMgSn相组成;铸态及经热处理后(热处理态)的合金晶界处均分布着连续的骨架状相,具有较高的维氏硬度,且热处理态合金的晶粒内部有微小颗粒状相析出;在520 ℃,该合金才发生相变,说明合金具有较高的耐热性能。分别在50 MPa/200 ℃下对铸态合金和热处理态合金进行蠕变试验,结果发现,相比于铸态合金,经热处理后合金的总蠕变时间延长至540 h,蠕变总量降低了0.001%,但在100 h时的蠕变量减少了0.030%。对比其他研究者的蠕变数据可知,在相同条件下,该铸态合金的蠕变性能远优于MRI153镁合金;热处理后的合金在50 MPa/200 ℃的蠕变断裂时间也长于A380铝合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
热焱
邱克强
李东和
丁韧
王梅
徐慧
徐颖
关键词:  铸态  热处理  镁合金  骨架状相  显微维氏硬度  蠕变时间    
Abstract: In this work, a new Mg-5Al-2Sn-5Ca magnesium alloy was prepared by adding common elements such as Al, Ca and Sn by using the design ideas of MRI230D alloy.The composition of the alloy was determined by XRD, the microstructure and creep fracture of the alloy were observed by SEM, and the hardness of the alloy in as-cast and after heat-treatment was measured by image processing micro-Vickers hardness tester. The creep fracture time and creep elongation of the alloy in as-cast and after heat-treatment were measured by creep testing machine at 50 MPa/200 ℃. The XRD results showed that the alloy was composed of α-Mg, Al2Ca, Mg2Ca, CaMgSn phase. It was observed by SEM that there were continuous skeleton phases at the grain boundary of the alloy in as-cast and after heat-treatment, and there were tiny particles precipitated in the grains after heat treatment. The alloy had higher Vickers hardness in as-cast and after heat-treatment, and the temperature of phase transformation was 520 ℃, which indicated that the alloy had high heat resistance. Creep tests were performed on as-cast and heat-treated alloys at 50 MPa/200 ℃, respectively. The results showed that compared to in as-cast alloys, the total creep time of the alloy after heat-treatment was extended to 540 h, and the total creep decreased 0.001%, but the creep variable at 100 h was reduced by 0.030%. Compared with the creep data of other researchers, under the same conditions, the creep properties of the as-cast alloy were much better than those of the MRI153 magnesium alloy; the creep fracture time of the alloy after heat treatment at 50 MPa/200 ℃ was also longer than that of A380 aluminum alloy.
Key words:  as-cast    heat-treatment    Mg alloy    skeleton phase    micro-Vickers hardness    creep time
                    发布日期:  2020-05-29
ZTFLH:  TG146.2+2  
基金资助: 辽宁省自然科学基金(20170540494)
通讯作者:  kqqiu@163.com   
作者简介:  热焱,辽宁省交通高等专科学校讲师,2015年9月毕业于沈阳工业大学,工学博士。主持辽宁省自然科学基金1项。在学术期刊上发表论文12余篇,申请国家发明专利4项,其中授权1项。主要研究方向包括:(1)非晶合金复合材料制备与应用研究;(2)耐热镁合金的制备与应用。
邱克强,沈阳工业大学教授,博士研究生导师。2002年1月获中国科学院金属研究所材料学专业博士学位。现任辽宁省铸造协会副理事长、辽宁省机械工程学会理事,沈阳市领军人才。在国内外学术期刊上发表论文120余篇,被SCI、EI收录80余篇。申请国家发明专利20项,授权7项。主要研究方向包括:(1)非晶合金复合材料制备与应用研究;(2)非晶合金凝固与弛豫效应研究;(3)高强度结构用钢的开发;(4)大型铸钢件工艺仿真与缺陷多场耦合分析;(5)低维亚稳材料催化特性及其应用。已培养博士15名、硕士50余名。
引用本文:    
热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
RE Yan, QIU Keqiang, LI Donghe, DING Ren, WANG Mei, XU Hui, XU Ying. Investigation on Creep Behavior of Mg-5Al-2Sn-5Ca Magnesium Alloy with High Hardness in As-cast and After Heat-treatment. Materials Reports, 2020, 34(12): 12076-12082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060026  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12076
1 Yang M B, Cheng L, Pan F S. Transactions of Nonferrous Metals Society of China,2010,20(4),584.
2 Xiao D, Chen Z, Wang X, et al. Materials Science and Engineering A,2016,660,166.
3 Zhu X R, Wang J, Xu Y D, et al. Journal of Rare Earths,2013,31(2),186.
4 Kim B H, Park K C, Park Y H, et al. Transactions of Nonferrous Metals Society of China,2010,20(7),1184.
5 Pekguleryua M O, Kaya A A. Advanced Engineering Materials,2003,5(12),866.
6 Alan A, Luo A A. Materials Science Forum,2003,(419-412),57.
7 Bettles C J, Gibson M A, Zhu S M. Materials Science and Engineering A,2009,505(1-2),6.
8 Zhu S M, Mordike B L, Nie J F. Materials Science and Engineering A,2008,483-484,583.
9 Luo A A. International Materials Reviews,2004,49(1),13.
10 Luo A A, Michael P, Powell B R. Metallyrgical and Materials Transactions A,2002,33(3),567.
11 Yang M B, Ma Y L, Pan F S. The Transactions of Nonferrous Metals Society of China,2009,19,1087.
12 Yang M B, Pan F S. Materials Science and Engineering A,2009,525,112.
13 Nayyeri G, Mahmudi R. Materials Science and Engineering A,2010,527(3),669.
14 Nie J F. Scripta Materialia,2003,48,1009.
15 Negishi Y, Nishimura T, Kiryuu M. Joumal of Japan Institute of Light Metals,1995,45(2),57.
16 Huang Y D, Dieringa H, Hort N, et al. Journal of Alloys and Compounds,2008,463(1),238.
17 Powell B R, Rezhets V, Balogh M P, et al. JOM,2002,54(8),34.
18 Mabuchi M, Higashi K. Acta Materialia,1996,44(11),4611.
19 Chen T, Zhang S, Chen Y, et al. Acta Metallurgica Sinica (English Letters),2014,27(5),957.
20 Kim J J, Kim D H, Shin K S, et al. Scripta Materialia,1999,41(3),333.
21 Alizadeh R, Mahmudi R. Journal of Alloys and Compounds,2011,509(37),9195.
22 Bai J, Sun Y S, Xue F, et al. Journal of University of Science and Technology Beijing,2007,29(2),198(in Chinese).
白晶,孙扬善,薛烽,等.北京科技大学学报,2007,29(2),198.
23 Liu H M, Chen Y G, Tang Y B, et al. Journal of Alloys and Compounds,2007,440(1-2),122.
24 Keyvani M, Mahmudi R, Nayyeri G. Materials Science and Engineering A,2010,527,7714.
25 Kozlov A, Ohno M, Abuleil T, et al. Intermetallics,2008,16(2),316.
26 Kim D H, Lee J Y, Lim H K, et al. Materials Transactions,2008,49(10),2405.
27 Dieringa H, Huang Y, Wittke P, et al. Materials Science and Engineering A,2013,585,430.
28 Luo A A, Michael P, Powell B R. Metallyrgical and Materials Transactions A,2002,33(3),567.
29 Chinese mechanical engineering society, Chinese materials research society, Committee of China materials engineering canon. China materials engineering canon vol.4, Chemical Industry Press Co., Ltd.China,2006(in Chinese).
中国机械工程学会,中国材料研究学会,中国材料工程大典编委会.中国材料工程大典第4卷,化学工业出版社,2006.
30 Han L H, Hu H, Northwood D O. Materials Letters,2008,62,381.
31 Nayyeri G, Mahmudi R. Materials Science and Engineering A,2010,527(7-8),2087.
32 Socjusz-Podosek M, Lityńska L. Materials Chemistry and Physics,2003,80(2),472.
33 Backes B, Durst K, Amberger D, et al. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science),2009,40(2),257.
34 Suzuki A, Saddock N D, Jones J W, et al. Acta Materialia,2005,53(9),2823.
35 Mondal A K, Fechner D, Kumar S, et al. Materials Science and Engineering A,2010,527(9),2289.
36 Zhang X M, Peng Z Y, Chen J M, et al. The Chinese Journal of Nonferrpus Metals,2004,14(9),1143.
37 Re Y, Qiu K Q, Ren Y L, et al. Transactions of Materials and Heat Treatment,2015,36(4),98(in Chinese).
热焱,邱克强,任英磊,等.材料热处理学报,2015,36(4),98.
38 Terada Y, Itoh D, Sato T. Materials Science & Engineering,2009,523(1-2),214.
39 Re Y. Modification of Mg2Si phase and microstructure/creep properties of ATX525 alloy. Ph.D. Thesis, Shenyang University of Technology, China,2015(in Chinese).
热焱.Mg2Si的变质和ATX525合金组织与蠕变性能研究.博士学位论文,沈阳工业大学,2015.
40 Aghion E, Moscovitch N, Arnon A. Materials Science and Technology,2007,23(3),270.
41 Zhu S M, Gibson M A, Easton M A, et al. Scripta Materialia,2010,63(7),698.
42 Yang M B, Pan F S, Li Z S, et al. Materials Review,2005,19(4),46(in Chinese).
杨明波,潘复生,李忠盛,等.材料导报,2005,19(4),46.
43 Kondori B, Mahmudi R. Materials Science and Engineering A,2010,527(7-8),2014.
44 Li A W, Zhu H M, Jiao D L, et al. Materials Review,2008,22(11),74(in Chinese).
李爱文,朱红梅,焦东玲,等.材料导报,2008,22(11),74.
45 Zhang D H, Wang R Q, Liu R Y, et al. Shanghai Nonferrous Metals,2009,30(4),182(in Chinese).
张大华,王瑞权,刘二勇,等.上海有色金属,2009,30(4),182.
[1] 刘江林, 齐艳阳, 王涛, 王跃林, 任忠凯, 韩建超. 镁合金板材轧制成形边裂的研究进展[J]. 材料导报, 2020, 34(7): 7138-7145.
[2] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[3] 余东海, 熊开琴, 黄楠. 等离子体聚合聚环氧乙烷类涂层用于提高镁合金心血管支架抗腐蚀性能[J]. 材料导报, 2020, 34(6): 6166-6171.
[4] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[5] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[6] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[7] 雷意, 严红革, 陈吉华, 夏伟军, 苏斌, 丁天, 黄文森. 温度对ZK60镁合金细晶板材成形性能的影响[J]. 材料导报, 2020, 34(2): 2067-2071.
[8] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[9] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[10] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[11] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[12] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[13] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[14] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[15] 郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed