Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2072-2076    https://doi.org/10.11896/cldb.19010016
  金属与金属基复合材料 |
ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能
郭丽丽1, 苑菁茹1, 汪建强1, 李永兵2
1 大连交通大学材料科学与工程学院,连续挤压教育部工程研究中心,大连 116028
2 北京机科国创轻量化科学研究院有限公司,北京 100083
Finite Element Simulation of Extrusion Process of ZK60 Magnesium Hollow Profile and Its Microstructure and Properties
GUO Lili1, YUAN Jingru1, WANG Jianqiang1, LI Yongbing2
1 Continuous Extrusion Engineering Research Center,Ministry of Education,School of Materials Science and Engineering,Dalian Jiaotong University,Dalian 116028,China
2 Beijing National Innovation Institute of Lightweight Ltd.,Beijing 100083,China
下载:  全 文 ( PDF ) ( 5801KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 运用HyperXtrude软件对ZK60镁合金中空型材挤压过程进行有限元数值模拟,得到了型材断面的温度场、速度场、位移场及应变场。由模拟结果可知,出口型材温度和速度呈平面对称分布,从型腔到挤压模具出口,温度呈梯段式下降。微观组织分析结果表明,ZK60镁合金中空型材的平均晶粒尺寸为8.9~23.1 μm,顶面的晶粒最大,底边拐角处晶粒尺寸最细小,这是由于型材断面各位置的温度、速度和应变不同导致动态再结晶程度不同。型材的(0002)基面织构是向挤压方向偏转10~15°的基面取向,型材顶面和侧面的(0002)极密度差异较大,顶面的(0002)极密度值为19.3,侧面的(0002)极密度值为6.9。型材抗拉强度约为310 MPa,侧面的延伸率最高为18.9%,顶面的延伸率最低为13.4%,这是由于侧面的(0002)基面织构向横向分散,降低了(0002)极密度。顶面的延伸率较低是较大的晶粒尺寸、较强的(0002)基面织构以及第二相分布情况综合作用的结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丽丽
苑菁茹
汪建强
李永兵
关键词:  ZK60镁合金  挤压型材  数值模拟  显微组织  织构    
Abstract: In this study, finite element simulation on the extrusion process of the ZK60 magnesium hollow profile was carried out with the aid of HyperXtrude software, and the distributions of temperature, velocity, displacement and strain of the outlet profile were obtained accordingly. As can be observed in the simulation results, the outlet profile showed plane symmetric distribution in temperature and velocity. The temperature declined from the outlet to the extrusion cavity stage by stage. In light of the microstructural investigation, the average grain size of the ZK60 magnesium profile ranged from 8.9 μm to 23.1 μm. The grains on the top surface exhibits the largest mean size, and the smallest sized grains located in the bottom corner, which attributed to differences in the dynamic recrystallization fraction in the ZK60 magnesium alloy caused by the diversity in temperature, velocity, strain and stress in different parts of the profile. The (0002) basal textures of the profile presented 10—15° inclining to the extrusion direction (ED). There was a considerable difference between the top and lateral surface in pole intensity of (0002) texture, with 19.3 in the top surface and 6.9 in the lateral surface. The tensile strength of the profile was about 310 MPa. With regard to the elongation of the profile, the side surface held the highest value of 18.9%, while the top surface exhibited the lowest value of 13.4%. This could be explained by the distribution of the (0002) basal texture towards transverse direction (TD), which reduced the intensity of the basal texture. The low elongation of the top surface is resulted from the comprehensive effect of coarse grains, strong (0002) basal texture and secondary phase distribution.
Key words:  ZK60 magnesium alloy    extrusion profile    numerical simulation    microstructure    texture
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TG397  
基金资助: 国家自然科学基金青年基金(51401043);辽宁省自然科学基金(2019-MS-035)
通讯作者:  guolili0822@hotmail.com;lybustb@163.com   
作者简介:  郭丽丽,大连交通大学,副教授。2011年3月毕业于日本东北大学,材料加工博士学位。主要从事镁合金连续挤压技术方面的研究,重点研究方向是镁合金塑性成形中微观组织和织构演变的研究,镁合金板材、型材连续挤压成形工艺的有限元模拟和实验研究;李永兵,男,博士,研究员,硕士研究生导师,北京机科国创轻量化科学研究院副总工程师,轻合金事业部总经理,先进成形技术与装备国家重点实验室学科带头人,中国机械工程学会材料分会理事,《稀有金属材料与工程》编委。主要从事高性能轻合金材料制备、精密塑性成形技术研究,针对汽车、航空、航天等领域技术需求,致力于铝合金、镁合金、钛合金、Ti2AlNb金属间化合物等轻量化材料工程应用基础研究工作。
引用本文:    
郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
GUO Lili, YUAN Jingru, WANG Jianqiang, LI Yongbing. Finite Element Simulation of Extrusion Process of ZK60 Magnesium Hollow Profile and Its Microstructure and Properties. Materials Reports, 2020, 34(2): 2072-2076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010016  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2072
1 Ding W J. Magnesium alloy science and technology, Science Press, China, 2007(in Chinese).丁文江. 镁合金科学与技术, 科学出版社, 2007.2 Xia X M, Xue K M, Li P, et al. Journal of Plasticity Engineering, 2017, 24(2), 105(in Chinese).夏显明, 薛克敏, 李萍,等. 塑性工程学报, 2017, 24(2), 105.3 Mordike B L, Ebert T. Materials Science and Engineering: A, 2001, 302(1), 37.4 Guo L, Fujita F. Journal of Magnesium and Alloys, 2015, 3(2), 95.5 Guo L L, Li Y B, Pei J Y. Forging Technology, 2015, 40(6), 138(in Chinese).郭丽丽, 李永兵, 裴久杨. 锻压技术, 2015, 40(6), 138.6 Yin X H. Research on design and technology of extrusion die for magne-sium alloy profile. Master’s Thesis, Hunan University, China, 2006(in Chinese).尹向红. 镁合金型材挤压模具设计与工艺研究. 硕士学位论文, 湖南大学, 2006.7 Zhang Z C, Duan Z S, Liu J J, et al. Hot Working Technology, 2018, 47(19), 192(in Chinese).张智超, 段昭帅, 刘佳佳,等. 热加工工艺, 2018, 47(19), 192.8 Guo L L, Li Y B, Zhang X S, et al. Journal of Plasticity Engineering, 2016, 23(5), 29(in Chinese).郭丽丽, 李永兵, 张晓嵩,等. 塑性工程学报, 2016, 23(5),29.9 Xi H X. Numerical simulation study on extrusion process of ZK60 magnesium alloy. Master’s Thesis, Harbin University of Science and Technology, China, 2009(in Chinese).席海霞. ZK60镁合金挤压过程数值模拟研究. 硕士学位论文, 哈尔滨理工大学, 2009.10 Li Q, Chen Z J, Wang X Y, et al. Journal of Plasticity Engineering, 2018, 25(3), 181(in Chinese).李奇, 陈忠家, 王雪英,等. 塑性工程学报, 2018, 25(3),181.11 Xue Y, Wu Y J, Yang Z H, et al. Materials Review B: Research Papers, 2017, 31(8), 55(in Chinese).薛勇, 吴耀金, 杨治辉,等. 材料导报:研究篇, 2017, 31(8), 55.12 Amir Hadadzadeh, Mary A Wells, Sugrib Kumar Shaha, et al. Journal of Alloys and Compounds, 2017, 25(702), 274.13 Guo L, Chen Z, Gao L. Materials Science & Engineering A, 2011, 528(29-30), 8537.14 Ryan N D, McQueen H J, Evangelista E. Materials Science and Engineering, 1986, 81, 259.15 Qin Y J, Pan Q L, He Y B, et al. Journal of Central South University, 2010, 41(5), 1774(in Chinese).覃银江, 潘清林, 何运斌,等. 中南大学学报, 2010, 41(5), 1774.16 He Y B, Pan Q L, Liu X Y, et al. Materials Science and Technology, 2011, 19(3), 1(in Chinese).何运斌, 潘清林, 刘晓艳,等. 材料科学与工艺, 2011, 19(3), 1.17 Pan F S, Han E H. High performance magnesium alloy and processing technology, Science Press, China, 2006(in Chinese).潘复生, 韩恩厚. 高性能镁合金及加工技术, 科学出版社, 2006.18 Huang X, Suzuki K, Chino Y, et al. Journal of Alloys and Compounds, 2015, 632, 94.19 Mishra S K, Tiwari S M, Carter J T, et al. Materials Science and Engineering: A, 2014, 599, 1.20 Zhang Y, Zhang Z M, Zhang X. Hot Working Technology, 2010, 39(6), 139(in Chinese).张义, 张治民, 张星. 热加工工艺, 2010, 39(6),139.21 Huang Z H, Qi W J, Xu J. Transactions of Nonferrous Metals Society of China, 2013, 23(9), 2568.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[3] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[4] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[5] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[6] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[7] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[8] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[9] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[10] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[11] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[12] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[13] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[14] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[15] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed