Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8141-8148    https://doi.org/10.11896/cldb.19020151
  金属及金属基复合材料 |
热等静压温度对14Cr-ODS钢显微组织及力学性能的影响
谢锐1,2, 吕铮2, 卢晨阳2, 王晴1, 徐世海2, 刘春明2
1 沈阳建筑大学材料科学与工程学院,沈阳 110168;
2 东北大学材料科学与工程学院,材料各向异性与织构教育部重点实验室,沈阳 110819
Effect of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of 14Cr-ODS Steel
XIE Rui1,2, LYU Zheng2, LU Chenyang2, WANG Qing1, XU Shihai2, LIU Chunming2
1 School of Material Science and Technology,Shenyang Jianzhu University,Shenyang 110168, China;
2 School of Material Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 11733KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验首先利用激光粒度仪、X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等研究了氧化物弥散强化(Oxides dispersion streng-thened,ODS)钢过饱和固溶体合金粉的球磨工艺,再利用电子背散射衍射(EBSD)、透射电镜(TEM)、高角环形暗场像(HAADF)、小角度X射线散射(SAXS)等实验方法研究热等静压(HIP)温度对14Cr-ODS钢微观结构和力学性能的影响。实验结果表明,合金粉经过50 h球磨后符合制备ODS钢的各项要求。900 ℃和1 200 ℃下热等静压成型的14Cr-ODS钢的晶粒尺寸分别为0.4 μm、1.2 μm。两种温度下热等静压成型的14Cr-ODS钢中均含有富Y-Ti-O纳米团簇、Y2Ti2O7及大尺寸的富Cr-Ti-O相。900 ℃下HIP成型14Cr-ODS钢样品中富Y-Ti-O纳米团簇的分布密度为4.96×1024 个/m3。随着热等静压温度的升高,富Y-Ti-O纳米团簇尺寸长大、分布密度降低。900 ℃下热等静压成型的样品的维氏硬度略高,抗拉强度更强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢锐
吕铮
卢晨阳
王晴
徐世海
刘春明
关键词:  氧化物弥散强化  合金粉球磨  热等静压温度  显微组织  富Y-Ti-O纳米团簇    
Abstract: The milling technology of oxides dispersion strengthened steels alloy powders were studied firstly by laser particle size analyzer, X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and so on. The electron backscattered diffraction, transmission electron microscope, high-angle annular dark field image, and small-angle X-ray scattering were applied to study the effect of hot isostatic pressing temperatures on the microstructure and mechanical properties of 14Cr-ODS steels. The experiment data show that the alloy powder can meet the requirements of preparing ODS steels after 50 h ball milling. The grain sizes of 14Cr-ODS steels hot isostatic pressing at 900 ℃ and 1 200 ℃ are 0.4 μm and 1.2 μm, respectively. Y-Ti-O-rich nanoclusters, Y2Ti2O7 and large-sized Cr-Ti-O-rich phases are found in 14Cr-ODS steels hot isostatic pressing at 900 ℃ and 1 200 ℃. The distribution density of Y-Ti-O-rich nanoclusters in 14Cr-ODS steels hot isostatic pressing at 900 ℃ is 4.96×1024 /m3. As the hot isostatic pressing temperature rising, the size of Y-Ti-O-rich nanoclusters growing while distribution density decreasing. The Vickers hardness of 14Cr-ODS steels HIP at 900 ℃ is slightly higher, and the tensile strength is higher at test temperatures.
Key words:  oxide dispersion strengthen    alloy powder ball milling    hot isostatic pressing temperatures    microstructure    Y-Ti-O-rich nanoclusters
               出版日期:  2020-04-25      发布日期:  2020-04-25
ZTFLH:  TB31  
基金资助: 自然科学基金青年基金(51601031)
通讯作者:  xierui198479@126.com   
作者简介:  谢锐,沈阳建筑大学讲师。2007年于沈阳建筑大学获得无机非金属材料工程学士学位,2015年7月于东北大学获得材料学博士学位。博士毕业后继续在东北大学冶金工程博士后流动站工作,工作期限为2015年10月至2018年3月。2018年3月博士后出站到沈阳建筑大学任教工作。至今,已公开发表学术论文超过15篇,获得国家专利授权两项。研究领域主要围绕国家重点发展的先进金属材料、核反应堆用金属结构材料。同时还获得了国家自然科学基金青年科学家基金项目、国家重大研发专项子课题、辽宁省自然科学基金等项目的支持。
引用本文:    
谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
XIE Rui, LYU Zheng, LU Chenyang, WANG Qing, XU Shihai, LIU Chunming. Effect of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of 14Cr-ODS Steel. Materials Reports, 2020, 34(8): 8141-8148.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020151  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8141
1 Hirata A, Fujita T, Wen Y R, et al. Nature Materials, 2011, 10(12), 922.
2 Eiselta C C, Schendzielorza H, Seubert A, et al. Nuclear Materials and Energy, 2016, 9, 22.
3 Lyu Z. Atomic Energy Science and Technology, 2011, 9(45),1105(in Chinese).
吕铮. 原子能科学技术, 2011, 9(45), 1105.
4 Kim T K, Noh S, Kang S H, et al. Nuclear Engineering and Technology, 2016, 48, 572.
5 Odette G R,Alinger M J, Wirth B D. Annual Review of Materials Research, 2008, 38, 471.
6 Lu C, Lu Z, Xie R, et al. Journal of Nuclear Materials, 2014, 455(1-3), 366.
7 Li Y F, Huan Q Y, Wu Y C, et al. Fusion Engineering and Design, 2007, 7, 48.
8 Lindau R, Möslang A, Rieth M, et al. Fusion Engineering and Design, 2005, 75-79, 989.
9 Parish C M, Unocic K A, Tan L, et al. Journal of Nuclear Materials, 2017, 483, 21.
10 Iwata N Y, Kasada R, Kimura A, et al. Fusion Engineering and Design, 2018, 126, 24.
11 Ukai S. Comprehensive Nuclear Materials, 2012, 4, 241.
12 Szaáraz Z, Toöroök G, Krsšjak V, et al. Journal of Nuclear Materials, 2013, 435(1-3), 56.
13 Oksiuta Z, Baluc N. Journal of Nuclear Materials, 2008, 374(1-2), 178.
14 Dou P, Kimura A, Okuda T, et al. Journal of Nuclear Materials, 2011, 417, 166.
15 Kimura A, Kasada R, Iwata N, et al. Journal of Nuclear Materials, 2011, 417(1-3), 176.
16 Lu C Y, Lu Z, Xie R, et al. Journal of Nuclear Materials, 2014, 455, 366.
17 Wang L, Bai Z, Shen H, et al. Journal of Nuclear Materials, 2017, 488, 319.
18 Zhang G, Zhou Z, Mo K, et al. Materials and Design, 2016, 98, 61.
19 Lu Chenyang. Microstructure and irradiation effect of nano-structural oxi-de dispersion steels. Ph.D. Thesis, Northeastern University Shenyang, China, 2014(in Chinese).
卢晨阳. 纳米结构氧化物弥散强化钢的微观结构与辐照效应. 博士学位论文, 沈阳东北大学,2014.
20 Beaucage G. Journal of Applied Crystallography, 1996, 29, 134.
21 麦振洪. 同步辐射光源及其应用(上册), 科学出版社,北京,2013.
22 Braun A, Huggins F E, Seifert S, et al. Combustion and Flame, 2004, 137,63.
23 Lu C, Lu Z, Xie R, et al. Materials Characterization, 2017, 134, 35.
24 Xu Shihai. The effect of hot isostatic pressing temperature on microstructure and mechanical properties of 14Cr oxide dispersion strengthened ferritic steel. Master’s Thesis. Northeastern University Shenyang, China, 2013(in Chinese).
徐世海. 热等静压温度对14Cr纳米结构ODS铁素体钢显微组织及力学性能的影响. 硕士学位论文, 沈阳东北大学,2013.
25 Sakasegawa H, Legendre F, Boulanger L, et al. Journal of Nuclear Materials, 2011, 417(1-3), 229.
26 Li Z, Lu Z, Xie R, et al. Materials Science & Engineering A, 2016, 660, 52.
27 Alinger M J, Odette G R, Hoelzer D T. Acta Materialia, 2009, 57(2), 392.
28 王磊. 材料的力学性能, 东北大学出版社, 沈阳,2009.
29 Pelleg J. Mechanical Properties of Materials, Springer, USA, 2013.
[1] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[2] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[3] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[4] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[5] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[6] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[7] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[8] 陶博浩, 李菊, 张彦华. TA19双态组织钛合金线性摩擦焊接头的组织结构及演化行为[J]. 材料导报, 2020, 34(14): 14147-14153.
[9] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[10] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[11] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[12] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[13] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[14] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[15] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed