Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5096-5101    https://doi.org/10.11896/cldb.19010064
  金属与金属基复合材料 |
铅冷能源系统中液态金属与铁基合金相容性的研究进展
陈灵芝1, 周张健1, CarstenSchroer2
1 北京科技大学材料科学与工程学院,北京 100083;
2 卡尔斯鲁厄理工学院应用材料及材料物理研究所,德国 卡尔斯鲁厄 76344
Research Progress on Compatibility of Liquid Metal and Iron-based Alloy in Lead Cooled Energy Systems
CHEN Lingzhi1, ZHOU Zhangjian1, Carsten Schroer2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Karlsruhe Institute of Technology(KIT), Institute for Applied Materials-Applied Materials Physics, Karlsruhe 76344, Germany
下载:  全 文 ( PDF ) ( 3821KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核电是一种可以有效解决能源与环境问题的清洁能源,受到国际上的广泛重视。目前的商用堆以第二代及第三代热中子反应堆为主,存在铀资源利用率低、放射性废物不断积累和潜在的核安全等问题,故具有更高安全性和经济性的第四代核能系统的研究成为当前的热点。四代堆中采用液态铅或铅基合金作为主冷却剂的反应堆称为铅冷快堆,由于液态铅及其合金具有优异的热工性能及核物理性能,铅冷快堆被认为是最有希望率先得到应用的第四代反应堆之一,液态铅也是加速器驱动次临界系统重要的液态靶材料兼冷却剂。此外,液态铅也被认为是太阳能热电系统最有前景的能量交换介质之一。
  铅冷堆具有可在较高温度条件下运行、发电效率高等明显优势,但也由于堆内的服役温度和中子辐照强度较高,对关键结构材料的服役性能提出很高要求。尤其是大多数合金在液态铅中都会由于合金元素的选择性溶解带来明显的腐蚀问题,结构材料与液态铅的相容性问题是铅冷能源系统工程应用的重要瓶颈。堆内的腐蚀情况包括材料的溶解和氧化、固液两相的输运以及腐蚀产物和杂质之间的反应等,是一个复杂的过程。腐蚀行为的影响因素包括材料自身特点及外界因素,例如材料类型、微观结构、化学成分和表面状态以及冷却剂类型、温度、氧浓度、流速和腐蚀时间等都会对腐蚀产生重要的影响。
  本文针对制约铅冷能源系统用结构材料发展的基础核心问题,把握材料成分和显微组织特点与其在液态铅中的溶解和氧化问题之间的关系这一主线,就国内外关于液态铅对合金的溶解腐蚀基础问题,金属及非金属腐蚀抑制剂的发展,不锈钢、氧化物弥散强化(ODS)钢、含Al奥氏体耐热钢(AFA)及FeCrAl合金在液态铅基中的腐蚀行为等研究内容进行总结和分析,对影响腐蚀的因素进行归纳,列举材料的腐蚀过程和机制以及相应的腐蚀产物和结构,分析各元素在腐蚀过程中对氧化层的作用及扩散迁移模式,并对存在的问题进行总结和展望,为满足铅冷能源系统关键结构材料的发展提供依据和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈灵芝
周张健
CarstenSchroer
关键词:  铅冷  溶解和氧化  氧化物弥散强化钢  含Al奥氏体耐热钢  FeCrAl合金  抗腐蚀性能    
Abstract: Nuclear power is a kind of clean energy which can effectively solve the energy and environmental problems and has been widely developed in the world. Commercial reactors include the GenerationⅡ and Generation Ⅲ thermal neutron reactors, which have problems such as low utilization rate of uranium resources, continuous accumulation of radioactive waste and potential nuclear safety. The Generation Ⅳ energy system with higher safety and economy becomes a research hot-spot. The lead-cooled fast reactor using lead or lead-based alloys as the main coolant is considered to be one of the most promising Generation Ⅳ reactors, as liquid lead and its alloys have excellent thermal and nuclear physical pro-perties. Liquid lead is also used as target material and coolant in the accelerator driven sub-critical system and considered to be one of the most promising energy exchange media for solar thermal systems.
  Lead based coolant has high melting point and can operate at rather high temperature. It has obvious advantages in power generation efficiency, while the harsh service environment, such as high operation temperature, strong irradiation intensity, requires new grade high performance structural materials. Especially, most of alloys in liquid lead will suffer to significant corrosion problems due to the selective dissolution of alloying elements. The compatibility of structural materials with liquid lead is a main bottleneck for the engineering application of lead cooled energy systems. Corrosion in the lead-based coolant, includes dissolution of materials, transport between solid and liquid phases and reaction between corrosion products and impurities, which is a complex process. The factors influencing corrosion behavior include the material feature and external factors, such as the type of materials, microstructure, chemical composition and surface state, as well as the type of coolant, temperature, oxygen concentration, flow rate and corrosion time. The research on the compatibility between structural materials and liquid metals becomes the key issue for the engineering application of lead cooled energy systems.
  In this paper, the main problem of restricting the development of structural materials for lead-cooled energy systems is summarized, focused on the relationship between material composition and microstructure characteristics and their dissolution and oxidation behavior in liquid lead. The progress of the development of metal and non-metallic corrosion inhibitors; the compatibility between stainless steel and liquid lead, especially, the development of oxide dispersion strengthened (ODS) steels, alumina formed austenitic (AFA) steels and FeCrAl alloys application for liquid lead cooled systems are summarized and prospected. The factors affecting corrosion behavior and the related mechanism are also summarized, and the effect and movement mode of typical elements on the oxide layer during the corrosion process are analyzed, which provides a reference for the development of key structural materials promising for application in lead cooled energy systems.
Key words:  lead cooled    dissolution and oxidation    oxide dispersion strengthened steels    alumina-forming austenitic steel    FeCrAl alloys    corrosion resistance
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TG17  
基金资助: 科技部国际热核聚变实验堆计划专项(2015GB121006)
通讯作者:  zhouzhj@mater.ustb.edu.cn   
作者简介:  陈灵芝,2011年毕业于北京科技大学,获得理学硕士学位,现为北京科技大学博士研究生,在周张健教授指导下进行研究学习。目前主要研究领域为ODS钢的制备,铁基合金在液态铅基合金中的相容性;周张健,北京科技大学材料学院教授、博士研究生导师。1996年在中国地质大学(北京)矿物学专业获硕士学位,2007年在北京科技大学材料学专业获博士学位。担任国际梯度材料顾问委员会(IACFGM)委员;Journal of Nuclear Materials杂志编辑顾问委员会委员;《材料导报》编委;主要从事能源系统用先进材料的研究,包括ODS钢、难熔金属、功能梯度材料、绝热材料等,出版教材2部,发表论文190篇,授权专利12项。
引用本文:    
陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
CHEN Lingzhi, ZHOU Zhangjian, Carsten Schroer. Research Progress on Compatibility of Liquid Metal and Iron-based Alloy in Lead Cooled Energy Systems. Materials Reports, 2020, 34(5): 5096-5101.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010064  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5096
1 Buckthorpe D. Introduction to generation Ⅳ nuclear reactors, in structural materials for generation Ⅳ nuclear reactors,Elsevier, 2017.
2 Pacio J, Wetzel T. Solar Energy, 2013, 93, 11.
3 Wetzel T, Pacio J, Marocco L, et al. AIMS Energy, 2014, 2, 89.
4 Chen D M, Shu J, Li J H, et al. Journal of Chinese Society of Power Engineering, 2008, 28(5), 812(in Chinese).
陈德明, 舒杰, 李戬洪, 等. 动力工程, 2008, 28(5), 812.
5 Hosemann P, Frazer D, Fratoni M, et al. Scripta Materialia, 2018, 143, 181.
6 Zhang J S. Corrosion Science, 2009, 51, 1207.
7 Wu Y C, Wang M H, Huang Q Y, et al. Nuclear Science and Enginee-ring, 2015, 35(2), 213(in Chinese).
吴宜灿, 王明煌, 黄群英, 等. 核科学与工程, 2015, 35(2), 213.
8 Cathcart J V, Manly W D. Corrosion, 1956, 12, 43.
9 Martín-Munoz F J, Soler-Crespo L, Gómez-Briceno D. Journal of Nuclear Materials, 2011, 416, 87.
10 Schroer C, Wedemeyer O,Novotny J, et al. Corrosion Science, 2014, 4, 113.
11 Benamati G, Buttol P, Imbeni V, et al. Journal of Nuclear Materials, 2000, 279, 308.
12 Kondo M,Takahashi M, Sawada N, et al. Journal of Nuclear Science and Technology, 2006, 43, 107.
13 Short M P, Ballinger R G, Haninen H G. Journal of Nuclear Materials, 2013, 434, 259.
14 Lambrinou K, Koch V, Coen G, et al. Journal of Nuclear Materials, 2014, 450, 244.
15 Wang J, Lu S P, Rong L J, et al. Corrosion Science, 2016,111, 13.
16 Schroer C, Koch V, Wedemeyer O, et al. Journal of Nuclear Materials, 2016, 469, 162.
17 Schroer C,Wedemeyer O,Novotny J, et al. Nuclear Engineering and Design, 2014, 280, 661.
18 Gabriele F D,Amore S,Scaiola C, et al. Nuclear Engineering and Design, 2014, 280, 69.
19 Schroer C, Konys J, Furukawa T, et al. Journal of Nuclear Materials, 2010, 398, 109.
20 Hosemann P, Thau H T, Johnson A L, et al.Journal of Nuclear Mate-rials, 2008, 373, 246.
21 Ricci E, Giuranno D,Canu G, et al. Materials and Corrosion, 2018, 69, 1584.
22 Yeliseyeva O,Tsisar V, Zhou Z J. Journal of Nuclear Materials, 2013, 442, 434.
23 Krauss W, Wulf S E, Konys J. Nuclear Materials and Energy, 2016, 9, 512.
24 Chen X,Haasch R, James F. et al.Journal of Nuclear Materials, 2012, 431, 125.
25 Lim J, Hwang I S, Kim J H. Journal of Nuclear Materials, 2013, 441, 650.
26 Popovic M P, Yang Y, Bolind A M, et al. JOM, 2018, 70, 1471.
27 Takaya S, Furukawa T, Aoto K, et al.Journal of Nuclear Materials, 2012, 428, 125.
28 Unocic Kinga A, Hoelzer David T. Journal of Nuclear Materials, 2016, 479, 357.
29 Ejenstam J,Szakálos P. Journal of Nuclear Materials, 2015, 461, 164.
[1] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[2] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[3] 何培, 姚伟志, 吕建明, 高博, 李先容. ODS钢的抗辐照设计及纳米第二相粒子表征的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 34-40.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed