Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 34-40    https://doi.org/10.11896/j.issn.1005-023X.2018.01.003
  物理   材料与可持续发展(一)—— 面向洁净能源的先进材料 |材料 |
ODS钢的抗辐照设计及纳米第二相粒子表征的研究进展
何培(),姚伟志,吕建明,高博,李先容
中国工程物理研究院材料研究所,江油 621908
Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review
Pei HE(),Weizhi YAO,Jianming LYU,Bo GAO,Xianrong LI
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908
下载:  全 文 ( PDF ) ( 997KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

先进裂变反应堆及聚变堆要求材料在高温高压、强中子辐照、长服役周期等苛刻服役环境下具有卓越的结构和性能稳定性。氧化物弥散强化(ODS)钢由于具有优异的耐高温及耐辐照性能成为第四代反应堆包壳及核聚变包层最有希望的候选材料。基于材料的中子辐照损伤特性,主要介绍了ODS钢的抗辐照设计及纳米第二相粒子的表征方面的研究进展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何培
姚伟志
吕建明
高博
李先容
关键词:  氧化物弥散强化钢  抗辐照设计  纳米第二相粒子检测    
Abstract: 

Advanced fission and fusion reactors require high-performance alloys with outstanding microstructure and property stability in ultra-severe service environment including high temperature and high pressure, intense neutron irradiation and long service life. Oxide dispersion strengthened (ODS) steels have been considered as the most promising candidate as fuel cladding in Gen. Ⅳ reactor and structural materials in fusion blanket. Based on neutron irradiation damage, this paper reviews the latest research progress of irradiation-resistant ODS steels, focusing on the alloy design and advanced nanoscale second-phase particles characterization techniques.

Key words:  oxide dispersion strengthened steels    irradiation-resistance designing    nanoscale second-phase particle characterization
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TL34  
基金资助: 国家磁约束核聚变能发展研究专项(2015GB109003)
作者简介:  何培:女,1983年生,博士,工程师,研究方向为反应堆结构材料、低活化钢 E-mail: hepei@caep.cn
引用本文:    
何培, 姚伟志, 吕建明, 高博, 李先容. ODS钢的抗辐照设计及纳米第二相粒子表征的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 34-40.
Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review. Materials Reports, 2018, 32(1): 34-40.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.003  或          http://www.mater-rep.com/CN/Y2018/V32/I1/34
图1  辐照后材料的典型微观组织结构随辐照温度/熔点(T/Tm)的变化[8]
图2  铁和铁素体/马氏体钢经受聚变中子辐照后γ表面剂量率的衰变规律[17]
图3  经过120 ℃、0.065 dpa的裂变中子辐照后308不锈钢中体心立方(BCC)区域和面心立方(FCC)区域的缺陷束积累情况[8]
图4  ODS钢中的纳米氧化物具有类NaCl结构[44]
[1] 国务院印发 《能源发展战略行动计划(2014~2020年)》的通知[J]. 中国核工业, 2014(11):6.
[2] Lv Z, Chen H, Chen C , et al. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR[J]. Fusion Engineering and Design, 2015,95:79.
[3] Peng X, Ye M, Song Y , et al.Engineering conceptual design of CFETR divertor[J].Fusion Engineering and Design, 2015, 98-99:1380.
[4] Li M . Structural design and thermal-hydraulic analysis research of helium cooled solid blanket for CFETR[D]. Hefei: University of Science and Technology of China, 2015(in Chinese).
[5] 李敏 . 中国聚变工程实验堆氦冷固态包层结构设计与热工水力分析研究[D]. 合肥:中国科学技术大学, 2015.
[6] Odette G R, Alinger M J, Wirth B D . Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008,38:471.
[7] 郁金南 . 材料辐照效应[M]. 北京: 化学工业出版社, 2007.
[8] Lv Z . Development and prospect of nano-structured ods steels for fusion reactor first wall application[J]. Atomic Energy Science and Technology, 2011,45(9):1105(in Chinese).
[9] 吕铮 . 聚变堆第一壁用纳米结构ODS钢的发展与前瞻[J]. 原子能科学技术, 2011,45(9):1105.
[10] Zinkle S J, Snead L L . Designing radiation resistance in materials for fusion energy[J]. Annual Review of Materials Research, 2014,44(1):241.
[11] McClintock D A, Sokolov M A, Hoelzer D T , et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT[J]. Journal of Nuclear Materials, 2009,392(2):353.
[12] Henry J, Averty X, Alamo A . Tensile and impact properties of 9Cr tempered martensitic steels and ODS-FeCr alloys irradiated in a fast reactor at 325 degrees C up to 78 dpa[J]. Journal of Nuclear Materials, 2011,417(1-3):99.
[13] Yamashita S, Akasaka N, Ukai S , et al. Microstructural development of a heavily neutron-irradiated ODS ferritic steel ( MA957) at elevated temperature[J]. Journal of Nuclear Materials, 2007, 367-370(1):202.
[14] Miao P, Hoelzer D T, Bentley J. , The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates[J].Journal of Nuclear Materials, 2007, 367-370(10):399.
[15] Kurtz R J, Odette G R, Yamamoto T , et al.The transport and fate of helium in martensitic steels at fusion relevant He/dpa ratios and dpa rates[J].Journal of Nuclear Materials, 2007, 367- 370(10):417.
[16] Toloczko M B, Gelles D S, Garner F A , et al.Irradiation creep and swelling from 400 to 600 ℃ of the oxide dispersion strengthened ferritic alloy MA957[J].Journal of Nuclear Materials, 2004, 329- 333(1):352.
[17] Butterworth G J . Low activation structural materials for fusion[J]. Fusion Engineering and Design, 1989,11(s1-2):231.
[18] Kohyama A, Hishinuma A, Gelles D S , et al.Low-activation ferritic and martensitic steels for fusion application[J].Journal of Nuclear Materials, 1996, 233- 237(1):138.
[19] Lindau R, M?slang A, Rieth M , et al.Present development status of EUROFER and ODS-EUROFER for application in blanket concepts[J].Fusion Engineering and Design, 2005, 75- 79:989.
[20] Zinkle S J . Advanced materials for fusion technology[J]. Fusion Engineering and Design, 2005,74(1-4):31.
[21] Kimura A, Kasada R, Kohyama A , et al. Recent progress in US-Japan collaborative research on ferritic steels R&D[J]. Journal of Nuclear Materials, 2007, 367- 370(Part 1):60.
[22] Klueh R L . Reduced-activation bainitic and martensitic steels for nuclear fusion applications[J]. Current Opinion in Solid State and Materials Science, 2004,8(3-4):239.
[23] van der Schaaf B, Gelles D S, Jitsukawa S , et al.Progress and critical issues of reduced activation ferritic/martensitic steel development[J].Journal of Nuclear Materials, 2000, 283- 287:52.
[24] Lindau R Schirra M. , First results on the characterisation of the reduced-activation-ferritic-martensitic steel EUROFER[J].Fusion Engineering and Design, 2001, 58- 59:781.
[25] Huang Q Y, Li C J, Li Y F , et al. R&D status of China low activation martensitic steel[J]. Chinese Journal of Nuclear Science and Engineering, 2007,27(1):41(in Chinese).
[26] 黄群英, 李春京, 李艳芬 , 等. 中国低活化马氏体钢CLAM研究进展[J]. 核科学与工程, 2007,27(1):41.
[27] Huang Q , Team F D S. Development status of CLAM steel for fusion application[J]. Journal of Nuclear Materials, 2014,455(1-3):649.
[28] Wang P, Chen J, Fu H , et al. Effect of N on the precipitation behaviours of the reduced activation ferritic/martensitic steel CLF-1 after thermal ageing[J]. Journal of Nuclear Materials, 2013,442(1-3,Supplement 1):S9.
[29] 王平怀, 谌继明, 付海英 , 等. 聚变堆结构材料低活性铁素体/马氏体钢CLF-1研究进展[ C]∥中国核学会2011年学术年会.贵阳, 2011.
[30] Mansur L K . Theory and experimental background on dimensional changes in irradiated alloys[J]. Journal of Nuclear Materials, 1994,216:97.
[31] Lindau R, M?slang A, Schirra M , et al. Mechanical and microstructural properties of a hipped RAFM ODS-steel[J].Journal of Nuclear Materials, 2002, 307- 311(Part 1):769.
[32] Baluc N, Boutard J L, Dudarev S L , et al. Review on the EFDA work programme on nano-structured ODS RAF steels[J]. Journal of Nuclear Materials, 2011,417(1-3):149.
[33] Klueh R L, Shingledecker J P, Swindeman R W , et al. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys[J]. Journal of Nuclear Materials, 2005,341(2-3):103.
[34] He P, Klimenkov M, M?slang A , et al. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel[J]. Journal of Nuclear Materials, 2014,455(1-3):167.
[35] He P, Lindau R, Moeslang A , et al. The influence of thermomechanical processing on the microstructure and mechanical properties of 13.5Cr ODS steels[J]. Fusion Engineering and Design, 2013,88(9-10):2448.
[36] Zinkle S J, Ice G E, Miller M K , et al. Advances in microstructural characterization[J]. Journal of Nuclear Materials, 2009, 386- 388:8.
[37] Hsiung L, Fluss M, Tumey S , et al. HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance[J]. Journal of Nuclear Materials, 2011,409(2):72.
[38] Kishimoto H, Alinger M J, Odette G R , et al. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys[J].Journal of Nuclear Materials, 2004, 329- 333(Part 1):369.
[39] Klimenkov M, Lindau R , M?slang A. TEM study of internal oxidation in an ODS-Eurofer alloy[J]. Journal of Nuclear Materials, 2009, 386- 388:557.
[40] Klimiankou M, Lindau R, M?slang A . HRTEM Study of yttrium oxide particles in ODS steels for fusion reactor application[J]. Journal of Crystal Growth, 2003,249(1-2):381.
[41] Klimiankou M, Lindau R ,M?slang A. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels[J]. Journal of Nuclear Materials, 2004, 329- 333(Part 1):347.
[42] Klimiankou M, Lindau R, M?slang A , et al. TEM study of PM 2000 steel[J]. Powder Metallurgy, 2005,48(3):277.
[43] Wu Y, Haney E M, Cunningham N J , et al. Transmission electron microscopy characterization of the nanofeatures in nanostructured ferritic alloy MA957[J]. Acta Materialia, 2012,60(8):3456.
[44] Williams C A, Unifantowicz P, Baluc N , et al. The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing[J]. Acta Materialia, 2013,61(6):2219.
[45] Klimenkov M, Lindau R M?slang A . New insights into the structure of ODS particles in the ODS-Eurofer alloy[J].Journal of Nuclear Materials, 2009, 386-388:553.
[46] Hirata A, Fujita T, Liu C T , et al. Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM[J]. Acta Materialia, 2012,60(16):5686.
[47] Hirata A, Fujita T, Wen Y R , et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels[J]. Nature Materials, 2011,10(12):922.
[48] Zhou B X . Three dimensional atom probe-an instrument for microstructure investigation of materials with analyzing atoms one by one[J]. Chinese Journal of Nature, 2005,27(3):125(in Chinese).
[48] 周邦新 . 三维原子探针——从探测逐个原子来研究材料的分析仪器[J]. 自然杂志, 2005,27(3):125.
[49] Kelly T F, Miller M K . Invited review article: Atom probe tomography[J]. The Review of Scientific Instruments, 2007,78(3):031101.
[50] Miller M K, Hoelzer D T, Kenik E A , et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957[J]. Journal of Nuclear Materials, 2004, 329-333(Part 1):338.
[51] Miller M K, Hoelzer D T, Kenik E A , et al. Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2005,13(3-4):387.
[52] Miller M K, Russell K F, Hoelzer D T . Characterization of precipitates in MA/ODS ferritic alloys[J]. Journal of Nuclear Materials, 2006,351(1-3):261.
[53] Mathon M H, Perrut M, Zhong S Y , et al. Small angle neutron scattering study of martensitic/ferritic ODS alloys[J]. Journal of Nuclear Materials, 2012,428(1-3):147.
[54] Williams C A, Marquis E A, Cerezo A , et al. Nanoscale characterisation of ODS-Eurofer 97 steel: An atom-probe tomography study[J]. Journal of Nuclear Materials, 2010,400(1):37.
[55] M?slang A, Adelhelm C, Heidinger R . Innovative materials for energy technology[J]. International Journal of Materials Research, 2008,99(10):1045.
[56] Ratti M, Leuvrey D, Mathon M H , et al. Influence of titanium on nano-cluster (Y,Ti,O)stability in ODS ferritic materials[J].Journal of Nuclear Materials, 2009, 386- 388:540.
[57] Alinger M J, Odette G R, Hoelzer D T . On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys[J]. Acta Materialia, 2009,57(2):392.
[58] Dumont M, Commin L, Morfin I , et al. Chemical composition of nano-phases studied by anomalous small-angle X-ray scattering: Application to oxide nano-particles in ODS steels[J]. Materials Characterization, 2014,87:138.
[59] Ohnuma M, Suzuki J, Ohtsuka S , et al. A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel[J]. Acta Materialia, 2009,57(18):5571.
[1] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed