Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 12-33    https://doi.org/10.11896/j.issn.1005-023X.2018.01.002
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
氧化钒作锂离子电池正极材料的研究进展
梁兴(),高国华,吴广明
同济大学物理科学与工程学院,上海市特殊人工微结构材料与技术重点实验室,上海 200092
Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries
Xing LIANG(),Guohua GAO,Guangming WU
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092
下载:  全 文 ( PDF ) ( 3201KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 

V2O5具有独特的层状结构,适合于锂离子的存储,与传统的锰酸锂、钴酸锂、磷酸铁锂等正极材料相比,具有高的理论比容量、功率密度以及价格低廉、原材料丰富等优势,在作为锂离子电池正极材料方面备受关注。但V2O5低的固有电导率及锂离子扩散系数,导致其容量保持率低和倍率性能差;此外,充放电过程中反复的相变会引起结构的不稳定,而且氧化钒会部分溶于电解液,因此表现出差的循环性能。正是由于这些制约因素的存在,对V2O5的固有缺陷进行改性研究以提高氧化钒正极材料的电化学性能成为重要的研究热点。将氧化钒进行纳米化以增大比表面积和缩短离子扩散距离,同时通过复合、掺杂改性等方法提高材料的导电性和循环稳定性,从而使V2O5正极材料表现出优异的电化学性能成为可能。文章从氧化钒电极材料纳米化,在纳米化的基础上复合导电材料,调节工作电压窗口,掺杂金属离子这四类方法阐述对氧化钒电化学性能的改善,以及各种方法对电极电化学性能的影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁兴
高国华
吴广明
关键词:  氧化钒正极材料  电极材料纳米化  复合导电材料  调节工作电压  掺杂金属离子    
Abstract: 

V2O5 is suitable for lithium ion storage due to its unique layered structure. Compared with traditional cathode materials such as LiMn2O4, LiCoO2 and LiFePO4, V2O5 has the advantages of high theoretical specific capacity, excellent power density, low-cost and abundance, and has attracted extensive attention in the field of cathode materials for lithium-ion batteries. However, its low inherent conductivity and slow lithium ion diffusion coefficient cause the poor capacity retention and rate capability. In addition, repeated phase change will lead to the structural instability during the charge-discharge process, moreover, vanadium oxides can partially dissolve into electrolyte, which are detrimental to long-term cycling performance in electrochemical devices. Because of these restricting factors, it has been an important research hot spot for modifying the V2O5 inherent defects to improve the electrochemical performance of electrode materials. It will be possible for V2O5 cathode materials to exhibit excellent electrochemical performance by preparing nanostructured vanadium oxides to enlarge surface area and shorten the ion diffusion distance, and integrating with conductive materials and doping to enhance the electrical conductivity and cycle stability of materials. In this work, we introduce the improvement on vanadium oxides inherent defects from four aspects, including making nanostructured electrode materials, integrating with conductive materials, adjusting working voltage window and doping metal ions. The influence of various methods on the change of electrochemical performance is discussed as well.

Key words:  vanadium oxide cathode materials    nanostructured electrode materials    integrating with conductive materials    adjusting working voltage    doping metal ions
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  O469  
基金资助: 国家自然科学基金(51272179)
作者简介:  梁兴:男,1991年生,硕士研究生,研究方向为纳米氧化钒基锂离子电池 E-mail: liangxin2017@163.com
引用本文:    
梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries. Materials Reports, 2018, 32(1): 12-33.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.002  或          https://www.mater-rep.com/CN/Y2018/V32/I1/12
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] Wu H, Yu G, Pan L , et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013,4:1943.
[2] Wu H, Chan G, Choi J W , et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012,7(5):310.
[3] Chmiola J, Largeot C, Taberna P L , et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 2010,328(5977):480.
[4] Fergus J W . Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2010,195(4):939.
[5] Wang Y, Cao G Z . Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008,20(12):2251.
[6] Li X, Cheng F, Guo B , et al. Template-synthesized LiCoO2, LiMn2O4 and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries[J]. The Journal of Physical Chemistry B, 2005,109(29):14017.
[7] Chen J . Recent progress in advanced materials for lithium ion batteries[J]. Materials, 2013,6(1):156.
[8] Xu J, Lin F, Nordlund D , et al. Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2[J]. Chemical Communications, 2016,52(22):4239.
[9] Liu Q, Mao D, Chang C , et al. Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application[J]. Journal of Power Sources, 2007,173(1):538.
[10] Yamada A, Chung S C, Hinokuma K . Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001,148(3):A224.
[11] Wang Y, Takahashi K, Lee K H , et al. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation[J]. Advanced Functional Materials, 2006,16(9):1133.
[12] Wang Y, Cao G Z . Synjournal and enhanced intercalation properties of nanostructured vanadium oxides[J]. Chemistry of Materials, 2006,18(12):2787.
[13] Yang Y, Li L, Fei H , et al. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014,6(12):9590.
[14] Wang X, Jia W, Wang L , et al. Simple in situ synjournal of carbon-supported and nanosheet-assembled vanadium oxide for ultra-high rate anode and cathode materials of lithium ion batteries[J]. Journal of Materials Chemistry A, 2016,4(36):13907.
[15] Song H, Liu C, Zhang C , et al. Self-doped V 4+-V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance [J]. Nano Energy, 2016,22:1.
[16] Kim T, Shin J, You T S , et al. Thermally controlled V2O5 nanoparticles as cathode materials for lithium-ion batteries with enhanced rate capability[J]. Electrochimica Acta, 2015,164:227.
[17] Sudant G, Baudrin E, Dunn B , et al. Synjournal and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process[J]. Journal of the Electrochemical Society, 2004,151(5):A666.
[18] Mai L Q, Tian X, Xu X , et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chemical Reviews, 2014,114(23):11828.
[19] Ding S, Chen J S, Lou X W . One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties[J]. Advanced Functional Materials, 2011,21(21):4120.
[20] Jiang J, Li Y, Liu J , et al. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes[J]. Nanoscale, 2011,3(1):45.
[21] Meduri P, Pendyala C, Kumar V , et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries[J]. Nano Letters, 2009,9(2):612.
[22] Szczech J R, Jin S . Nanostructured silicon for high capacity lithium battery anodes[J]. Energy & Environmental Science, 2011,4(1):56.
[23] Zhang L, Zhao K, Xu W , et al. Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries[J]. RSC Advances, 2014,4(63):33332.
[24] W?rle M, Krumeich F, Bieri F , et al. Flexible V7O16 layers as the common structural element of vanadium oxide nanotubes and a new crystalline vanadate[J]. Zeitschrift fur Anorganische Chemistry, 2002,628(12):2778.
[25] Cui C J, Wu G M, Shen J , et al. Synjournal and electrochemical performance of lithium vanadium oxide nanotubes as cathodes for rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2010,55(7):2536.
[26] Cui C J, Wu G M, Yang H Y , et al. A new high-performance cathode material for rechargeable lithium-ion batteries:Polypyrrole/vanadium oxide nanotubes[J]. Electrochimica Acta, 2010,55(28):8870.
[27] Sediri F, Gharbi N . From crystalline V2O5 to nanostructured vanadium oxides using aromatic amines as templates[J]. Journal of Physics and Chemistry of Solids, 2007,68(10):1821.
[28] Petkov V, Zavalij P Y, Lutta S , et al. Structure beyond bragg: Study of V2O5 nanotubes[J]. Physical Review B, 2004,69(8):085410.
[29] Wang Y, Takahashi K, Shang H , et al. Synjournal and electrochemical properties of vanadium pentoxide nanotube arrays[J]. The Journal of Physical Chemistry B, 2005,109(8):3085.
[30] Cui C J, Wu G M, Yang H Y , et al. Synjournal, characterization and electrochemical impedance spectroscopy of VOx-NTs/PPy composites[J]. Solid State Communications, 2010,150(37-38):1807.
[31] Zhou X W, Wu G M, Gao G H , et al. Electrochemical performance improvement of vanadium oxide nanotubes as cathode materials for lithium ion batteries through ferric ion exchange technique[J]. Journal of Physical Chemistry C, 2012,116(41):21685.
[32] Zhou X W, Cui C J, Wu G M , et al. A novel and facile way to synthesize vanadium pentoxide nanospike as cathode materials for high performance lithium ion batteries[J]. Journal of Power Sources, 2013,238:95.
[33] Huang S Z, Cai Y, Jin J , et al. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014,2(34):14099.
[34] Mai L Q, Xu L, Han C , et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano Letters, 2010,10(11):4750.
[35] Cheah Y L, Gupta N, Pramana S S , et al. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries[J]. Journal of Power Sources, 2011,196(15):6465.
[36] Zhu C, Shu J, Wu X , et al. Electrospun V2O5 micro/nanorods as cathode materials for lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2015,759(2):184.
[37] Li Z, Liu G, Guo M , et al. Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2015,173:131.
[38] Wang H G, Ma D L, Huang Y , et al. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries[J]. Chemistry—A European Journal, 2012,18(29):8987.
[39] Qin M, Liang Q, Pan A , et al. Template-free synjournal of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2014,268:700.
[40] Naguib M, Mashtalir O, Carle J , et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012,6(2):1322.
[41] Rui X, Lu Z, Yu H , et al. Ultrathin V2O5 nanosheet cathodes:Realizing ultrafast reversible lithium storage[J]. Nanoscale, 2013,5(2):556.
[42] An Q, Wei Q, Mai L , et al. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries[J]. Physical Chemistry Chemical Physics, 2013,15(39):16828.
[43] Liang S, Hu Y, Nie Z , et al. Template-free synjournal of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries[J]. Nano Energy, 2015,13:58.
[44] Song H, Zhang C, Liu Y , et al. Facile synjournal of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries[J]. Journal of Power Sources, 2015,294:1.
[45] Su Y, Pan A, Wang Y , et al. Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2015,295:254.
[46] Peng X, Zhang X, Wang L , et al. Hydrogenated V2O5 nanosheets for superior lithium storage properties[J]. Advanced Functional Materials, 2016,26(5):784.
[47] Guo Y G, Hu J S, Wan L J . Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008,20(15):2878.
[48] Li H Y, Wei C, Wang L , et al. Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(45):22892.
[49] Dong Y, Wei H, Liu W , et al. Template-free synjournal of V2O5 hierarchical nanosheet-assembled microspheres with excellent cycling stability[J]. Journal of Power Sources, 2015,285:538.
[50] Pan A, Wu H B, Yu L , et al. Synjournal of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012,4(8):3874.
[51] Pan A Q, Wu H B, Zhang L , et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energy & Environmental Science, 2013,6(5):1476.
[52] Chen L, Gu X, Jiang X , et al. Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries[J]. Journal of Power Sources, 2014,272:991.
[53] Wang S, Li S, Sun Y , et al. Three-dimensional porous V2O5 cathode with ultra high rate capability[J]. Energy & Environmental Science, 2011,4(8):2854.
[54] Tang Y, Rui X, Zhang Y , et al. Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process[J]. Journal of Materials Chemistry A, 2013,1(1):82.
[55] Ko Y N, Chan Kang Y, Park S B . A new strategy for synthesizing yolk-shell V2O5 powders with low melting temperature for high performance Li-ion batteries[J]. Nanoscale, 2013,5(19):8899.
[56] Su D W, Dou S X, Wang G X . Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(29):11185.
[57] Tan Q, Zhu Q, Pan A , et al. Template-free synjournal of β-Na0.33-V2O5 microspheres as cathode materials for lithium-ion batteries[J]. CrystEngComm, 2015,17:4774.
[58] Pan A, Wu H B, Yu L , et al. Template-free synjournal of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries[J]. Angewandte Chemie, 2013,125(8):2282.
[59] Cao A M, Hu J S, Liang H P , et al. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2005,44(28):4391.
[60] Wu H B, Pan A, Hng H H , et al. Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties[J]. Advanced Functional Materials, 2013,23(45):5669.
[61] Wang S, Lu Z, Wang D , et al. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2011,21(17):6365.
[62] Mai L Q, An Q, Wei Q , et al. Nanoflakes-assembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity[J]. Small, 2014,10(15):3032.
[63] Chen M, Xia X, Yuan J , et al. Free-standing three-dimensional continuous multilayer V2O5 hollow sphere arrays as high-performance cathode for lithium batteries[J]. Journal of Power Sources, 2015,288:145.
[64] Qie L, Chen W M, Wang Z H , et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012,24(15):2047.
[65] Tang Y, Zhang Y, Deng J , et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014,53(49):13488.
[66] Zhao H, Pan L, Xing S , et al. Vanadium oxides-reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance[J]. Journal of Power Sources, 2013,222:21.
[67] Li S, Wu D, Cheng C , et al. Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids[J]. Angewandte Chemie, 2013,125(46):12327.
[68] Sathiya M, Prakash A, Ramesha K , et al. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage[J]. Journal of the American Chemical Society, 2011,133(40):16291.
[69] Li Z L, Zhu Q Y, Huang S N , et al. Interpenetrating network V2O5 nanosheets/carbon nanotubes nanocomposite for fast lithium storage[J]. RSC Advances, 2014,4(87):46624.
[70] Wu Y J, Gao G H, Wu G M . Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life[J]. Journal of Materials Chemistry A, 2015,3(5):1828.
[71] Liu Q, Li Z F, Liu Y , et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries[J]. Nature Communications, 2015,6:6127.
[72] Pandey G P, Liu T, Brown E , et al. Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2016,8(14):9200.
[73] Chen D, Quan H, Luo S , et al. Reduced graphene oxide enwrapped vanadium pentoxide nanorods as cathode materials for lithium-ion batteries[J]. Physica E:Low-dimensional Systems and Nanostructures, 2014,56:231.
[74] Zhou X W, Wu G M, Wu J D , et al. Multiwalled carbon nanotubes-V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2013,1(48):15459.
[75] Cheng J, Wang B, Xin H L , et al. Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2013,1(36):10814.
[76] Ihsan M, Meng Q, Li L , et al. V2O5/mesoporous carbon composite as a cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2015,173:172.
[77] Shi W, Rui X, Zhu J , et al. Design of nanostructured hybrid materials based on carbon and metal oxides for Li ion batteries[J]. The Journal of Physical Chemistry C, 2012,116(51):26685.
[78] Cheah Y L, von Hagen R, Aravindan V , et al. High-rate and elevated temperature performance of electrospun V2O5 nanofibers carbon-coated by plasma enhanced chemical vapour deposition[J]. Nano Energy, 2013,2(1):57.
[79] Wang X, Huang Y, Jia D , et al. Self-assembled sandwich-like vanadium oxide/graphene mesoporous composite as high-capacity anode material for lithium ion batteries[J]. Inorganic Chemistry, 2015,54(24):11799.
[80] Yu R, Zhang C, Meng Q , et al. Facile synjournal of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties[J]. ACS Applied Materials & Interfaces, 2013,5(23):12394.
[81] Li G, Qiu Y, Hou Y , et al. Synjournal of V2O5 hierarchical structures for long cycle-life lithium-ion storage[J]. Journal of Materials Chemistry A, 2015,3(3):1103.
[82] Li Y, Yao J, Uchaker E , et al. Sn-doped V2O5 film with enhanced lithium-ion storage performance[J]. The Journal of Physical Chemistry C, 2013,117(45):23507.
[83] Cheah Y L, Aravindan V, Madhavi S . Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012,4(6):3270.
[84] Wei Y, Ryu C W, Kim K B . Cu-doped V2O5 as a high-energy density cathode material for rechargeable lithium batteries[J]. Journal of Alloys and Compounds, 2008,459(1-2):L13.
[85] Cao Y, Fang D, Liu R , et al. Three-dimensional porous iron vanadate nanowire arrays as a high-performance lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2015,7(50):27685.
[86] Li S R, Ge S Y, Qiao Y , et al. Three-dimensional porous Fe0.1-V2O5.15 thin film as a cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012,64:81.
[87] Lu Y, Wu J, Liu J , et al. Facile synjournal of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2015,7(31):17433.
[88] Moretti A, Maroni F, Osada I , et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries[J]. ChemElectroChem, 2015,2(4):529.
[89] Sathiya M, Abakumov A M, Foix D , et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials, 2015,14(2):230.
[90] Laisa C P, Nanda Kumar A K, Selva Chandrasekaran S, et al. A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M=Fe or Co[J]. Journal of Power Sources, 2016,324:462.
[91] Yu M, Zeng Y, Han Y , et al. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100 000 cycles[J]. Advanced Functional Materials, 2015,25(23):3534.
[92] Song Y, Liu T Y, Yao B , et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017,13(16):1700067.
[1] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[2] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[3] 刘雨昕, 胡倩, 粟茵, 文麒麟, 刘丽欣, 覃钺, 梁露露, 张宏志, 朱静. 具有高热稳定性Sm3+激活硼磷酸盐Na3B6PO13橙红色荧光粉的发光特性[J]. 材料导报, 2024, 38(21): 23080106-6.
[4] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[7] 王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
[8] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[9] 吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
[10] 孟帅, 李坤, 秦振兴, 张宇飞, 马柯榕, 宫长伟, 杨雯. 铝酸钇晶体光学性质和热力学性质的第一性原理研究[J]. 材料导报, 2023, 37(10): 22060251-5.
[11] 刘锋, 陈昆峰, 薛冬峰. 稀土倍半氧化物晶体材料研究进展[J]. 材料导报, 2023, 37(3): 22110093-7.
[12] 周国伟, 李枝兰, 王晓娇. 应力与取向调控超薄La0.7Sr0.3MnO3薄膜各向异性的研究[J]. 材料导报, 2022, 36(19): 21020016-6.
[13] 杨潇, 曹成龙, 胡书, 葛嘉庆, 蒋青松, 盛传祥. 混合卤化物钙钛矿中的光致相分离效应[J]. 材料导报, 2022, 36(16): 20100115-15.
[14] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[15] 吴苗苗, 于虎, 王咏琪, 窦睿然, 胡泊, 朱爽秋, 马向东. 锂金属电极与LiCl界面相互作用的第一性原理研究[J]. 材料导报, 2022, 36(12): 21030181-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed