Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23020231-11    https://doi.org/10.11896/cldb.23020231
  无机非金属及其复合材料 |
球型Si基碳包覆锂离子电池负极材料研究进展
李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松*
贵州大学化学与化工学院,贵阳 550025
Research Progress of Spherical Si-based Carbon-coated Anode Materials for Lithium-ion Batteries
LI Donglin, YANG Wanliang, CAO Rui, YANG Xue, XU Meisong*
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 5218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅基材料包括单质硅及其氧化物SiOx(0≤x≤2),具有理论容量高、工作电位低、对环境友好、储量丰富等特点,有望取代石墨成为新一代锂离子电池负极材料。然而,硅基材料在充放电过程中的体积膨胀效应始终不能避免,硅氧化物的低电导率也限制了硅基材料的发展。为解决上述问题,研究人员提出了各种各样的解决方法,其中,在硅基材料表面进行碳包覆的方法具有很广阔的应用前景并被广泛研究。本文先简要介绍了各硅基材料的储锂机理和失效问题,再从最典型的球型结构设计的角度切入,详细介绍了不同的球型碳包覆结构,如核壳结构、蛋黄壳结构、多孔结构等,并讨论了Si基碳包覆负极材料未来商业化的发展趋势和要面对的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东霖
杨万亮
曹锐
杨雪
徐梅松
关键词:  锂离子电池  球型  硅基材料  碳包覆    
Abstract: Silicon-based materials, including elemental silicon and its oxide SiOx(0≤x≤2), are expected to replace graphite as a new generation of anode material for lithium-ion batteries because of their high theoretical capacity, low working potential, environment-friendly and abundant reserves. However, the volume expansion effect of silica-based materials in the process of charge and discharge is inevitable. In addition, the low conductivity of silica-based materials also limits the development of silica-based materials. In order to solve the above problems, researchers have proposed a variety of solutions, among which the carbon coating method on the surface of silicon-based materials has a great application prospect and has been widely studied. This paper first outlines the lithium storage mechanism and failure problems of each silicon-based material, and then summarizes different spherical carbon coating structures in detail from the perspective of the most typical spherical structure design, such as core-shell structure, yolk-shell structure, porous structure, etc. The future development trend of carbon-coated anode materials based on Si and the challenges to be faced are discussed.
Key words:  lithium-ion battery    spherical    silicon-based material    carbon coating
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  O469  
基金资助: 国家自然科学基金(22162008);贵州省科学技术厅基础研究计划项目([2020]1Y055)
通讯作者:  *徐梅松,贵州大学化学与化工学院副教授、硕士研究生导师。1997年贵州工业大学(现合并为贵州大学)化学工程与工艺专业本科毕业后留校工作至今。目前主要从事化工及材料等方面的研究工作。msxu1974@126.com   
作者简介:  李东霖,2022年7月于合肥工业大学获得工学学士学位。现为贵州大学化学与化工学院硕士研究生,在徐梅松副教授的指导下进行研究。目前主要研究领域为锂离子电池负极材料。
引用本文:    
李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
LI Donglin, YANG Wanliang, CAO Rui, YANG Xue, XU Meisong. Research Progress of Spherical Si-based Carbon-coated Anode Materials for Lithium-ion Batteries. Materials Reports, 2024, 38(21): 23020231-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020231  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23020231
1 Tarascon J M, Armand M. Nature, 2001, 414, 359.
2 Thackeray M M, Wolverton C, Isaacs E D. Energy & Environmental Science, 2012, 5, 7854.
3 Chen X, Huang Y, Chen J, et al. Ceramics International, 2015, 41 (7), 8533.
4 Casimir A, Zhang H, Ogoke O, et al. Nano Energy, 2016, 27, 359.
5 Entwistle J, Rennie A, Patwardhan S. Journal of Materials Chemistry A, 2018, 6 (38), 18344.
6 Maranchi J P, Hepp A F, Evans A G, et al. Journal of the Electrochemical Society, 2006, 153, A1246.
7 Su T Y, Reece M, Chua S C. Australian & New Zealand Journal of Obstetrics & Gynaecology, 2013, 53 (4), 375.
8 Armand M, Tarascon J M. Nature, 2008, 451 (7179), 652.
9 Ashuri M, He Q, Shaw L L. Journal of Power Sources, 2023, 559 (1), 232660.
10 Su X, Wu Q, Li J, et al. Advanced Energy Materials, 2014, 4 (1), 1300882.
11 Wang R, Feng D, Chen T, et al. Journal of Alloys and Compounds, 2020, 825 (5), 154081.
12 Zhang S, He M, Su C C, et al. Current Opinion in Chemical Engineering, 2016, 13, 24.
13 Liang C, Gao M, Pan H, et al. Journal of Alloys and Compounds, 2013, 575 (25), 246.
14 Li J, Dahn J R. Journal of the Electrochemical Society, 2007, 154 (3), A156.
15 Huang S, Fan F, Li J, et al. Acta Materialia, 2013, 61 (12), 4354.
16 Obrovac M N, Krause L J. Journal of the Electrochemical Society, 2007, 154 (2), A103.
17 Rahman M A, Song G, Bhatt A I, et al. Advanced Functional Materials, 2016, 26 (5), 647.
18 Agyeman D A, Song K, Lee G H, et al. Advanced Energy Materials, 2016, 6 (20), 1600904.
19 Yu K, Zhang H, Qi H, et al. New Journal of Chemistry, 2018, 42 (24), 19811.
20 Liu X H, Zhong L, Huang S, et al. ACS Nano, 2012, 6 (2), 1522.
21 Liu X H, Zheng H, Zhong L, et al. Nano Letters, 2011, 11 (8), 3312.
22 Yang L Z, Yin A, Liu Z K, et al. Mining and Metallurgical Engineering, 2019, 39(4), 140 (in Chinese).
杨乐之, 殷敖, 刘志宽, 等. 矿冶工程, 2019, 39(4), 140.
23 Zhao L M, Wang H Y, Jie Q F, et al. Materials Reports, 2020, 34 (7), 7026 (in Chinese).
赵立敏, 王惠亚, 解启飞, 等. 材料导报, 2020, 34 (7), 7026.
24 Mcdowell M T, Lee S W, Nix W D, et al. Advanced Materials, 2013, 25 (36), 4966.
25 Zhang T, Fu L, Gao J, et al. Pure and Applied Chemistry, 2006, 78 (10), 1889.
26 Wang D, Gao M, Pan H, et al. Journal of Power Sources, 2014, 256 (15), 190.
27 Hwa Y, Kim W S, Hong S H, et al. Electrochimica Acta, 2012, 71(1), 201.
28 Liu Y, Wen Z Y, Wang X Y, et al. Journal of Power Sources, 2009, 189 (1), 733.
29 Fan Z, Zheng S, He S, et al. Diamond and Related Materials, 2020, 107, 107898.
30 Fan Z, Wang Y, Zheng S, et al. Energy Storage Materials, 2021, 39, 1.
31 Lu Y, Ye Z, Zhao Y, et al. Carbon, 2023, 201(5), 962.
32 Zhou X, Yin Y X, Wan L J, et al. Advanced Energy Materials, 2012, 2 (9), 1086.
33 Yang J, Wang Y X, Chou S L, et al. Nano Energy, 2015, 18, 133.
34 Su L, Xie J, Xu Y, et al. Physical Chemistry Chemical Physics, 2015, 17 (27), 17562.
35 Wu Z, Luo J, Peng J, et al. Green Energy & Environment, 2021, 6 (4), 517.
36 Wang M S, Fan L Z, Huang M, et al. Journal of Power Sources, 2012, 219 (1), 29.
37 Luo J, Ma B, Peng J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7 (12), 10415.
38 Wang K, Pei S, He Z, et al. Chemical Engineering Journal, 2019, 356 (15), 272.
39 An W, He P, Che Z, et al. ACS Applied Materials & Interfaces, 2022, 14 (8), 10308.
40 Liu Z, Yu Q, Zhao Y, et al. Chemical Society Reviews, 2019, 48 (1), 285.
41 Yasuda K, Kashitani Y, Kizaki S, et al. Journal of Power Sources, 2016, 329 (15), 462.
42 Shi L, Pang C, Chen S, et al. Nano Letters, 2017, 17 (6), 3681.
43 Yang J, Takeda Y, Imanishi N, et al. Solid State Ionics, 2002, 152-153, 125.
44 Yamada M, Ueda A, Matsumoto K, et al. Journal of the Electrochemical Society, 2011, 158 (4), A417.
45 Yamada M, Inaba A, Ueda A, et al. Journal of the Electrochemical Society, 2012, 159 (10), A1630.
46 Zhao H, Wang Z, Lu P, et al. Nano Letters, 2014, 14 (11), 6704.
47 Zhao H, Yuca N, Zheng Z, et al. ACS Applied Materials & Interfaces, 2015, 7 (1), 862.
48 Dong J, Xue Y, Zhang C, et al. Advanced Materials, 2017, 29 (6), 1603692.
49 Chen L, Zhang Y, Lin C, et al. Journal of Materials Chemistry A, 2014, 2 (25), 9684.
50 Son I H, Park J H, Kwon S, et al. Nature Communications, 2015, 6, 7393.
51 Dou F, Shi L, Song P, et al. Chemical Engineering Journal, 2018, 338 (15), 488.
52 Liu L, Li X, He G, et al. Journal of Alloys and Compounds, 2020, 836, 155407.
53 Fu R, Ji J, Yun L, et al. Energy Storage Materials, 2021, 35, 317.
54 Wang T, Wang F, Zhu H. Materials Letters, 2015, 161, 89.
55 Guo L, He H, Ren Y, et al. Chemical Engineering Journal, 2018, 335 (1), 32.
56 Park C M, Choi W, Hwa Y, et al. Journal of Materials Chemistry, 2010, 20 (23), 4854.
57 Hwa Y, Park C M, Sohn H J. Journal of Power Sources, 2013, 222 (15), 129.
58 Xiao Q, Gu M, Yang H, et al. Nature Communications, 2015, 6, 8844.
59 Ge J, Tang Q, Shen H, et al. Ceramics International, 2020, 46 (8), 12507.
60 Wang M, Yin L, Li M, et al. Journal of Colloid and Interface Science, 2019, 549 (1), 225.
61 Zhang Y, Li Y, Wang Z, et al. Nano Letters, 2014, 14 (12), 7161.
62 Ma X, Wei Z, Han H, et al. Chemical Engineering Journal, 2017, 323 (1), 252.
63 Chen K, Tan Y, Wang K, et al. Electrochimica Acta, 2022, 401 (1), 139497.
64 Jiang Y, Mu D, Chen S, et al. Journal of Alloys and Compounds, 2018, 744 (5), 7.
65 Guo B, Shu J, Wang Z, et al. Electrochemistry Communications, 2008, 10 (12), 1876.
66 Gu Z, Xia X, Liu C, et al. Journal of Alloys and Compounds, 2018, 757 (15), 265.
67 Min K, Kim K, An H, et al. Journal of Power Sources, 2022, 543 (30), 231849.
68 Kim Y K, Moon J W, Lee J G, et al. Journal of Power Sources, 2014, 272 (25), 689.
69 Li H H, Wu X L, Sun H Z, et al. The Journal of Physical Chemistry C, 2015, 119 (7), 3495.
70 Ali S, Jaffer S, Maitlo I, et al. Journal of Alloys and Compounds, 2020, 812, 152127.
71 Zhao J, Lee H W, Sun J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (27), 7408.
72 Zhang J, Zhang C, Liu Z, et al. Journal of Power Sources, 2017, 339 (30), 86.
73 Yu B C, Hwa Y, Kim J H, et al. Electrochimica Acta, 2014, 117 (20), 426.
74 Zhu G, Zhang F, Li X, et al. Angewandte Chemie International Edition, 2019, 58 (20), 6669.
75 Jung H, Yeo B C, Lee K R, et al. Physical Chemistry Chemical Physics, 2016, 18 (47), 32078.
76 Jiao M, Wang Y, Ye C, et al. Journal of Alloys and Compounds, 2020, 842 (25), 155774.
77 Jiang B, Zeng S, Wang H, et al. ACS Applied Materials & Interfaces, 2016, 8 (46), 31611.
78 Li Z, Zhao H, Lv P, et al. Advanced Functional Materials, 2018, 28 (31), 1605711.
79 Zhang J, Ma P, Zhang X, et al. Energy Technology, 2019, 7 (4), 1800800.
80 Liu Z, Zhao Y, He R, et al. Energy Storage Materials, 2019, 19, 299.
81 Zhang Y, Hu G, Yu Q, et al. Materials Chemistry Frontiers, 2020, 4 (6), 1656.
82 Wang H, Que X, Liu Y, et al. Journal of Alloys and Compounds, 2021, 874 (5), 159913.
83 Chen W, Kuang S, Wei H, et al. Journal of Colloid and Interface Science, 2022, 610 (15), 583.
84 Tao H C, Huang M, Fan L Z, et al. Solid State Ionics, 2012, 220 (20), 1.
85 Kim H S, Cho W, Park D, et al. Journal of Alloys and Compounds, 2019, 803 (30), 325.
86 Li Z, Zhao H, Wang J, et al. Nano Research, 2020, 13 (2), 527.
[1] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[2] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[3] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[4] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[5] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[6] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[7] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[8] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[9] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[10] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[11] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[12] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[13] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[14] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[15] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed