Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21080240-13    https://doi.org/10.11896/cldb.21080240
  无机非金属及其复合材料 |
SiO用作锂离子电池负极材料的研究进展
穆洪亮1, 冯柳2,*, 吴立清1, 毛晓璇1, 刘志超1
1 山东理工大学材料科学与工程学院,山东 淄博 255000
2 山东理工大学分析测试中心,山东 淄博 255000
Research Progress on SiO as Anode Material for Lithium-ion Batteries
MU Hongliang1, FENG Liu2,*, WU Liqing1, MAO Xiaoxuan1, LIU Zhichao1
1 School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
2 Analysis & Testing Center, Shandong University of Technology, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 8975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池(LIBs)具有使用寿命长、能量密度高、自放电率低等优点,目前已广泛应用于新能源汽车、便携式电子设备、清洁能源存储等领域,这也对锂离子电池的性能提出了更高要求。传统的商业化石墨理论容量仅为372 mAh·g-1,作为锂离子电池负极已不能满足对更高容量、更稳定电极的需求。SiO材料具有高比容量(2 400 mAh·g-1)、原料丰富、制备简单等特点,近年来得到研究人员的广泛关注。然而,SiO负极材料在循环过程中存在较大的体积变化(约200%)和较差的导电性,阻碍了其大规模商业化的应用。研究人员通过多种方法来改善SiO在嵌脱锂时的体积变化以及其带来的影响,提高其在循环过程中的结构稳定性。本文主要综述了SiO负极材料的最新研究进展,重点总结以下四种改性策略:微纳结构工程、复合结构改性、粘结剂优化工程以及预锂化,并对所得SiO基负极材料的结构特点以及电化学性能进行了对比和总结。最后对SiO基负极材料存在的问题进行分析和展望,为制备高容量、长循环性能的锂离子电池SiO负极材料提供重要指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
穆洪亮
冯柳
吴立清
毛晓璇
刘志超
关键词:  锂离子电池  负极材料  一氧化硅  复合材料    
Abstract: Lithium-ion batteries (LIBs)are advantageous because of their long cycle life, high energy density, and low self-discharge rate. Thus, they are widely used in new energy vehicles. Many other fields such as portable electronic equipment and clean energy storage place higher demands on the performance of LIBs. Traditional LIB’s anodes, such as commercial graphite materials, are unable to satisfy higher demands in terms of larger capacity and better stability. SiO is a material that has been extensively studied in recent years because of its high specific capacity (2 400 mAh·g-1), abundant raw material, and simple preparation. However, the large volume change (~200%) and poor electrical conductivity of SiO in the cycle process hinder its large-scale commercial application as anode material. Many strategies have been explored to control the volume change and the accompanying effects during lithiation for the improvement of structure stability. In this paper, the latest research progress on SiO anode materials is reviewed, with a focus on four aspects of the explored strategies: micro-nano structure engineering, composite structure modification, binder optimization engineering, and pre-lithium methods. The structural characteristics and electrochemical performance of SiO-based anode materials are compared and summarized as well. Finally, some challenges faced by SiO-based anode materials are discussed and the prospects are also analyzed. All in all, this paper is expected to provide meaningful guidelines for the preparation of lithium-ion batteries with high capacity and long stability.
Key words:  lithium-ion battery    anode material    silicon monoxide    composite materials
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TM911  
基金资助: 国家自然科学基金面上项目(52070124);山东省自然科学基金青年基金(ZR2020QE145);山东省自然科学基金项目(ZR2020QE066),浮法玻璃新技术国家重点实验室开放课题项目(2020KF08)
通讯作者:  *冯柳,山东理工大学分析测试中心教授,硕士研究生导师,2001年7月本科毕业于河北理工大学,获工学学士学位,2004年7月毕业于兰州理工大学,获工学硕士学位,2014年在上海大学材料科学与工程学院取得工学博士学位。主要从事能源材料、微纳米尺度材料的制备、结构与机理研究。近年来,主持及主要参与国家级、省基金10余项,发表高水平论文近30篇,授权发明专利6项,获山东省科技进步三等奖1项,作为主要参与人修订了国家教育部行业标准《JY/T0581-2020透射电镜分析方法通则》1项。fengl@sdut.edu.cn   
作者简介:  穆洪亮,2019年毕业于山东理工大学,获得工学学士学位。现为山东理工大学材料科学与工程学院硕士研究生,在冯柳教授的指导下进行研究。目前主要研究的领域为锂离子电池负极材料。
引用本文:    
穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
MU Hongliang, FENG Liu, WU Liqing, MAO Xiaoxuan, LIU Zhichao. Research Progress on SiO as Anode Material for Lithium-ion Batteries. Materials Reports, 2023, 37(18): 21080240-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080240  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21080240
1 Wang Y X, Liu B, Li Q Y, et al. Journal of Power Sources, 2015, 286, 330.
2 Kennedy B, Patterson D, Camilleri S. Journal of Power Sources, 2000, 90(2), 156.
3 Ritchie A G. Journal of Power Sources, 2001, 96(1), 1.
4 Wang M, Wang F F, Li Z H, et al. Russian Journal of Electrochemistry, 2006, 42(8), 901.
5 Thackeray M M, Wolverton C, Isaacs E D. Energy & Environmental Science, 2012, 5(7), 7854.
6 Bang B M, Lee J I, Kim H, et al. Advanced Energy Materials, 2012, 2(7), 878.
7 Kim M K, Jang B Y, Lee J S, et al. Journal of Power Sources, 2013, 244, 115.
8 Pan K, Zou F, Canova M, et al. Journal of Power Sources, 2019, 413, 20.
9 Lu W Q, Zhou X W, Liu Y Z, et al. ACS Applied Materials & Interfaces, 2020, 12(51), 57141.
10 Park C M, Choi W, Hwa Y, et al. Journal of Materials Chemistry, 2010, 20(23), 4854.
11 Hwang J, Kim K, Jung W S, et al. Journal of Power Sources, 2019, 436, 226883.
12 Schulmeister K, Mader W. Journal of Non-Crystalline Solids, 2003, 320(1-3), 143.
13 Hass G. Journal of the American Ceramic Society, 1950, 33(12), 353.
14 Hass G, Scott N W. Journal of the Optical Society of America, 1949, 39(2), 179.
15 Chen Y Y, Shen Y P, Shen Y H, et al. Applied Surface Science, 2020, 527, 146759.
16 Hirata A, Kohara S, Asada T, et al. Nature Communications, 2016, 7, 11591.
17 Zhang R Q, Fan W J. Journal of Cluster Science, 2006, 17(4), 541.
18 Yang J, Takeda Y, Imanishi N, et al. Solid State Ionics, 2002, 152-153, 125.
19 Miyachi M, Yamamoto H, Kawai H, et al. Journal of the Electrochemical Society, 2005, 152(10), A2089.
20 Miyachi M, Yamamoto H, Kawai H. Journal of the Electrochemical Society, 2007, 154(4), A376.
21 Kim J H, Park C M, Kim H, et al. Journal of Electroanalytical Chemistry, 2011, 661(1), 245.
22 Jung S C, Kim H J, Kim H J, et al. Journal of Physical Chemistry C, 2016, 120(2), 886.
23 Jiao M L, Wang Y F, Ye C L, et al. Journal of Alloys and Compounds, 2020, 842, 155774.
24 Huang T, Yang Y X, Pu K C, et al. RSC Advances, 2017, 7(4), 2273.
25 Hwa Y, Park C M, Sohn H J, et al. Journal of Power Sources, 2013, 222, 129.
26 Yu B C, Hwa Y, Park C M, et al. Journal of Materials Chemistry A, 2013, 1(15), 4820.
27 Kim H S, Cho W, Park D, et al. Journal of Alloys and Compounds, 2019, 803, 325.
28 Lee J I, Park S. Nano Energy, 2013, 2(1), 146.
29 Yu B C, Hwa Y, Kim J H, et al. Electrochimica Acta, 2014, 117, 426.
30 Guo L Z, He H Y, Ren Y R, et al. Chemical Engineering Journal, 2018, 335, 32.
31 Wang M Y, Yin L, Li M Q, et al. Journal of Colloid and Interface Science, 2019, 549, 225.
32 Ge J W, Tang Q T, Shen H L, et al. Ceramics International, 2020, 46(8), 12507.
33 Park D, Kim H S, Seo H, et al. Electrochimica Acta, 2020, 357, 1386862.
34 Si Q, Hanai K, Ichikawa T, et al. Journal of Power Sources, 2011, 196(22), 9774.
35 Liu J, Ben M, Liu A D, et al. Chinese Chemical Letters, 2021, 32(9), 2914.
36 Kirner J, Qin Y, Zhang L H, et al. Journal of Power Sources, 2020, 450, 227711.
37 Ren Y R, Ding J N, Yuan N Y, et al. Journal of Solid State Electroche-mistry, 2012, 16(4), 1453.
38 Shi H B, Zhang H, Hu C Q, et al. Particuology, 2021, 56, 84.
39 Li Y N, Hou X H, Wang J Y, et al. Journal of Materials Science: Mate-rials in Electronics, 2015, 26(10), 7507.
40 Shi L R, Pang C L, Chen S L, et al. Nano Letters, 2017, 17(6), 3681.
41 Han J L, Chen G R, Yan T T, et al. Chemical Engineering Journal, 2018, 347, 273.
42 Xu S, Zhou J G, Wang J, et al. Advanced Functional Materials, 2021, 31(32), 2101645.
43 Fu R S, Ji J J, Yun L, et al. Energy Storage Materials, 2021, 35, 317.
44 Huang Z H, Dang G J, Jiang W P, et al. ChemistryOpen, 2021, 10(3), 380.
45 Wu W J, Liang Y H, Ma H Y, et al. Electrochimica Acta, 2016, 187, 473.
46 Wu Z L, Ji S B, Liu L K, et al. Rare Metals, 2021, 40(5), 1110.
47 Doh C H, Shin H M, Kim D H, et al. Electrochemistry Communications, 2008, 10(2), 233.
48 Hu L, Xia W M, Tang R H, et al. Frontiers in Chemistry, 2020, 8, 388.
49 Yang Z X, Du Y, Yang Y J, et al. Journal of Power Sources, 2021, 497, 229906.
50 Kim K W, Park H, Lee J G, et al. Electrochimica Acta, 2013, 103, 226.
51 Xia M, Li Y R, Zhou Z, et al. Ceramics International, 2019, 45(2), 1950.
52 Liu W R, Yen Y C, Wu H C, et al. Journal of Applied Electrochemistry, 2009, 39(9), 1643.
53 Huang X, Li M Q. Applied Surface Science, 2018, 439, 336.
54 Gao R S, Tang J, Yu X L, et al. Nano Energy, 2020, 70, 104444.
55 Wei Q, Chen Y M, Hong X J, et al. Applied Surface Science, 2020, 511, 145609.
56 Wei Q, Chen Y M, Hong X J, et al. Journal of Colloid and Interface Science, 2020, 565, 315.
57 Feng L, Han X, Su X R, et al. Journal of Alloys and Compounds, 2018, 765, 512.
58 Song F, Yang X L, Zhang S Z, et al. Ceramics International, 2018, 44(15), 18509.
59 Lee D J, Ryou M H, Lee J N, et al. Electrochemistry Communications, 2013, 34, 98.
60 Huang B, Chu B B, Huang T, et al. Molecules, 2021, 26(6), 1536.
61 Peng M X, Qiu Y C, Zhang M X, et al. Applied Surface Science, 2020, 507, 145060.
62 Zhang J Z, Zhang J, Bao T Z, et al. Journal of Power Sources, 2017, 348, 16.
63 Xu T, Zhang J, Yang C Y, et al. Journal of Alloys and Compounds, 2018, 738, 323.
64 Liu Y C, Huang J Y, Zhang X Q, et al. Journal of Alloys and Compounds, 2018, 749, 236.
65 Yom J H, Lee J K, Yoon W Y. Journal of Applied Electrochemistry, 2015, 45(5), 397.
66 Du X Y, Zhang H Y, Lan X X, et al. Energy & Environmental Mate-rials, 2022, 5(1), 353.
67 Xu D H, Chen W Y, Luo Y L, et al. Applied Surface Science, 2019, 479, 980.
68 Zhou N, Wu Y F, Zhou Q, et al. Applied Surface Science, 2019, 486, 292.
69 Park Y K, Lee J W. Applied Surface Science, 2021, 554, 149512.
70 Liu L, Li X X, He G, et al. Journal of Alloys and Compounds, 2020, 836, 155407.
71 Dou F, Shi L Y, Song P A, et al. Chemical Engineering Journal, 2018, 338, 488.
72 Liu L Q, Zhong X, Li M Q. Journal of Materials Science, 2021, 56(12), 7587.
73 Morimoto H, Tatsumisago M, Minami T. Electrochemical and Solid-State Letters, 2001, 4(2), A16.
74 Cheng F, Wang G J, Sun Z X, et al. Ceramics International, 2017, 43(5), 4309.
75 Park E, Kim Y E, Song J, et al. Journal of Materials Chemistry A, 2019, 7(26), 15621.
76 Chang C, Huang X Y,Wang Q. Journal of Chongqing University of Technology(Natural Science),2021,35(12),198(in Chinese).
常春,黄心悦,王琼. 重庆理工大学学报(自然科学),2021,35(12),198.
77 Wei C L, Fei H F, Tian Y, et al. Chinese Chemical Letters, 2020, 31(4), 980.
78 Tan T, Lee P K, Zettsu N, et al. Journal of Power Sources, 2020, 453, 227874.
79 Yue L, Zhang L Z, Zhong H X. Journal of Power Sources, 2014, 247, 327.
80 Komaba S, Shimomura K, Yabuuchi N, et al. The Journal of Physical Chemistry C, 2011, 115(27), 13487.
81 Liu N, He W J, Liao H J, et al. Journal of Materials Science, 2021, 56(10), 6337.
82 Hua J Q, Chu H L, Zhu Y, et al. Frontiers of Materials Science, 2020, 14(3), 243.
83 Pan Q R, Zuo P J, Mu T S, et al. Journal of Power Sources, 2017, 347, 170.
84 Yom J H, Hwang S W, Cho S M, et al. Journal of Power Sources, 2016, 311, 159.
85 Seong I W, Kim K T, Yoon W Y. Journal of Power Sources, 2009, 189(1), 511.
86 Huang B, Huang T, Wan L Y, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(2), 648.
87 Yang X L, Wen Z Y, Xu X X, et al. Journal of Power Sources, 2007, 164(2), 880.
88 Xie L Z, Liu H, Lin S X, et al. RSC Advances, 2019, 9(20), 11369.
89 Xia M, Li Y R, Wu Y F, et al. Applied Surface Science, 2019, 480, 410.
90 Zhang Y, Guo G N, Chen C, et al. Journal of Power Sources, 2019, 426, 116.
91 Yamamura H, Nakanishi S, Iba H. Journal of Power Sources, 2013, 232, 264.
92 Zhou M J, Gordin M L, Chen S R, et al. Electrochemistry Communications, 2013, 28, 79.
93 Xia M, Li Y R, Xiong X, et al. Journal of Alloys and Compounds, 2019, 800, 116.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[5] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[6] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[7] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[8] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[9] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[10] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[11] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[12] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[13] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[14] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[15] 向天意, 李端, 李俊生, 王衍飞, 万帆, 刘荣军. 高温电磁透波材料的研究进展[J]. 材料导报, 2023, 37(18): 22090029-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed