Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21090097-6    https://doi.org/10.11896/cldb.21090097
  高分子与聚合物基复合材料 |
玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究
邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春*
海军工程大学动力工程学院,武汉 430033
Preparation and Sound-absorbing Performance of Hollow Glass Microsphere/PI Aerogel Composites
SHAO Huilong, FEI Zhifang, LI Xiaohua, ZHAO Shuang, LI Kunfeng, YANG Zichun*
School of Power Engineering, Naval University of Engineering, Wuhan 430033, China
下载:  全 文 ( PDF ) ( 5699KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 PI气凝胶是一种多孔吸声材料,但对中低频声波的吸声效果欠佳。为了提高PI气凝胶对中低频声波的吸声性能,引入不同粒径(29 μm、40 μm、55 μm)的玻璃微珠(HGM)作为复合相,采用溶胶-凝胶、CO2超临界干燥等工艺制备了中低频声波吸声性能良好的HGM/PI气凝胶复合材料,研究了复合材料的性质(比表面积、收缩率、密度)、微观结构以及吸声性能,分析了HGM的粒径、添加量和复合材料本身厚度对复合材料吸声性能的影响。结果表明:复合材料的密度(0.156~0.208 g/cm3)、比表面积(107.8~399.8 m2/g)与HGM的堆叠密度和添加量有关。在500~6 300 Hz范围内,30 mm厚的空白样品(PI气凝胶)的吸声系数峰值为0.39(3 150 Hz),添加HGM后,相同厚度的复合材料在1 000~2 500 Hz出现峰值,较空白样品向低频方向移动,峰值大小为0.56~0.87,均高于0.39。对比发现,在1 000~2 500 Hz 范围内,粒径为29 μm的HGM与PI气凝胶复合后的材料吸声性能最好,粒径为40 μm的HGM与PI气凝胶复合后的材料吸声性能最差。另外,随着HGM添加量的增加,复合材料的吸声系数峰值逐渐向低频方向移动,且出现先减小后增大的趋势,同时吸声系数峰值随着材料厚度的减小向高频方向移动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵慧龙
费志方
李肖华
赵爽
李昆锋
杨自春
关键词:  空心玻璃微珠  PI气凝胶  复合材料  吸声性能    
Abstract: As a porous sound-absorbing material, PI aerogel has a poor sound-absorbing performance for low-and medium-frequency sound waves. In order to improve the sound-absorbing performance of PI aerogel to sound waves with low or medium frequency, the present study introduced hollow glass microsphere (HGM) with different particle sizes (29 μm, 40 μm and 55 μm) as a component to prepare HGM/PI aerogel composites with excellent low- and medium-frequency sound-absorbing performance by sol-gel and supercritical CO2 drying. In this work, the properties (specific surface area, shrinkage and density), microstructure and sound-absorbing performance of the composites were studied, and the effects of particle size and added amount of HGM, and thickness of the composites on the sound-absorbing performance of the composites were analyzed. The results indicate that the density (0.156—0.208 g/cm3) and specific surface area (107.8—399.8 m2/g) of the composites are rela-ted to the stacking density and the added amount of HGM. In the range of 500—6 300 Hz, the peak value of sound-absorbing coefficient of blank sample (PI aerogel) with a thickness of 30 mm is 0.39, corresponding to 3 150 Hz. After introducing HGM component, the composites with the same thickness have peak values within the range of 1 000—2 500 Hz.The positions of peak values shift to the lower-frequency band compared with blank sample and the values are higher than 0.39, ranging from 0.56 to 0.87. According to the comparison of composites composed of HGM with different particle sizes, in the range of 1 000—2 500 Hz, the composite material composed of 29 μm HGM and PI aerogel has the best sound-absorbing performance, while the composite material composed of 40 μm HGM and PI aerogel has the worst sound-absorbing performance. In addition, with the increase of the amount of HGM, the peak value of the sound-absorbing coefficient of the composite material gradually shifts to the lower frequency band, and appears to decrease at first and then increase, and the peak value of the sound-absorbing coefficient shifts to the higher frequency band with the decrease in the material's thickness.
Key words:  hollow glass microsphere    PI aerogel    composite material    sound absorption performance
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51802347)
通讯作者:  *杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月本科毕业于海军工程学院轮机系,1996年9月取得华中科技大学固体力学专业博士学位,2013年4月至2013年10月在美国加州大学欧文分校作高级访问学者。获国家科技进步奖二等奖1项,军队科技进步奖一等奖3项、二等奖2项,先后入选教育部“新世纪优秀人才支持计划”“新世纪百千万人才工程”国家级人选,军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Journal of the American Ceramic Society、Cera-mics International等期刊发表研究论文100余篇。yangzichun11@sina.com   
作者简介:  邵慧龙,2015年毕业于辽宁石油化工大学,获得工学硕士学位。现为海军工程大学动力工程学院博士研究生,在杨自春教授的指导下进行研究。主要研究方向为气凝胶制备与性能。
引用本文:    
邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
SHAO Huilong, FEI Zhifang, LI Xiaohua, ZHAO Shuang, LI Kunfeng, YANG Zichun. Preparation and Sound-absorbing Performance of Hollow Glass Microsphere/PI Aerogel Composites. Materials Reports, 2023, 37(9): 21090097-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090097  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21090097
1 Reynolds J G, Coronado P R, Hrubesh L W. Energy Sources, 2001, 23, 831.
2 Reynolds J G, Coronado P R, Hrubesh L W. Journal of Non-Crystalline Solids, 2001, 292, 127.
3 Riffat S B, Qiu G. International Journal of Low-carbon Technologies, 2013, 8(1), 1.
4 Ruben Baetens, Bjørn Petter Jelle, Arild Gustavsen. Energy and Buil-dings, 2011, 43(4), 761.
5 Cuce E, Pinar M C, Christopher J. Renewable & Sustainable Energy Reviews, 2014, 34, 273.
6 Li Xiaohua, Yang Zichun, Li Kunfeng, et al. Journal of Sol-Gel Science and Technology, 2019, 92(3), 652.
7 Mojtaba Rahimabady, Eleftherios Christos Statharas, Kui Yao, et al. Applied Physics Letters, 2017, 111(24), 241601.
8 He Donglin, Guo Zhancheng, Liao Hongqiang, et al. Materials Reports, 2012, 26(S1), 303(in Chinese).
何冬林, 郭占成, 廖洪强, 等. 材料导报, 2012, 26(S1), 303.
9 Francesca M, Ann M A, Mary K C, et al. Applied Acoustics, 2018, 142, 123.
10 Feng Jingduo, Le Duyen, Son T N, et al. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2016, 506, 298.
11 Nga H N D, Thao P L, Quoc B T, et al. Materials Chemistry and Physics, 2020, 242, 122267.
12 Zahra Talebi, Parham Soltani, Negar Habibi, et al. Construction and Building Materials, 2019, 220, 76.
13 Wang J C, Shen J, Ni X Y, et al. Rare Metal Materials and Engineering, 2010, 39, 14.
14 Franco Cotana, Anna Laura Pisello, Elisa Moretti, et al. Building and Environment, 2014, 81, 92.
15 Fu Wuyou, Liu Shikai, Fan Wenhua, et al. Journal of Magnetism and Magnetic Materials, 2007, 316(1), 54.
16 Gu Jian, Wu Gaohui, Zhao Xiao. Journal of Functional Materials, 2007, 38(5), 764(in Chinese).
顾健, 武高辉, 赵骁. 功能材料, 2007, 38(5), 764.
17 Li Hao, Mei Zhiyuan, Zhu Xi. Polymer Materials Science & Engineering, 2011, 27(6), 102(in Chinese).
李浩, 梅志远, 朱锡. 高分子材料科学与工程, 2011, 27(6), 102.
18 Li Hao, Zhu Xi, Mei Zhiyuan. Journal of Functional Polymers, 2009(3), 298(in Chinese).
李浩, 朱锡, 梅志远. 功能高分子学报, 2009(3), 298.
19 Sun Weihong, Liu Bo, Gao Kongjun, et al. Engineering Plastics Application, 2017, 45(12), 112(in Chinese).
孙卫红, 刘波, 高孔军, 等. 工程塑料应用, 2017, 45(12), 112.
20 Li Xiaohui. Preparation and properties of pressure-resistant sound absor-bing polyurethane elastomer. Master's Thesis, National University of Defense Technology, China, 2018(in Chinese).
李校辉. 耐压型吸声聚氨酯弹性体制备与性能研究. 硕士学位论文, 国防科技大学, 2018.
21 Esfandiar Pakdel, Maryam Naebe, Sima Kashi, et al. Progress in Organic Coatings, 2020, 141, 105553.
22 Gao Guangpeng, Hu Yan, Jia Hongyu, et al. Journal of Physics and Chemistry of Solids, 2019, 135, 109105.
23 Cinzia Buratti, Francesca Merli, Elisa Moretti. Energy and Buildings, 2017, 152, 472.
24 Li Yang. Preparation and properties of lightweight foam glass sound absorbing material. Master's Thesis, North University of China, China, 2016(in Chinese).
李阳. 轻质泡沫玻璃吸声材料的制备及性能研究. 硕士学位论文, 中北大学, 2016.
25 Feng Jingduo, Le Duyen, Son T. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 506, 298.
26 Kyung Wha Oh, Duk Ki Kim, Seong Hun Kim. Fibers & Polymers, 2009, 10(5), 731.
[1] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[2] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[3] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[4] 赵新涛, 姜宁, 王明道, 李骏腾, 李迪, 谭洪生. 纤维增强热塑性复合材料拉挤成型工艺研究进展[J]. 材料导报, 2024, 38(1): 22050237-9.
[5] 张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
[6] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[7] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[8] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[9] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[10] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[11] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[12] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[13] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[14] 陈双, 雷子萱, 徐力, 李嘉玄, 陈栋梁, 强军锋, 刘育红. 线型酚醛树脂结构改性的研究进展[J]. 材料导报, 2023, 37(23): 22050233-10.
[15] 谢发之, 宋恒帅, 张道德, 杨少华, 张梦, 方亮, 邵永刚. 铅炭电池负极添加剂研究进展[J]. 材料导报, 2023, 37(22): 22030203-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed