Abstract: As a porous sound-absorbing material, PI aerogel has a poor sound-absorbing performance for low-and medium-frequency sound waves. In order to improve the sound-absorbing performance of PI aerogel to sound waves with low or medium frequency, the present study introduced hollow glass microsphere (HGM) with different particle sizes (29 μm, 40 μm and 55 μm) as a component to prepare HGM/PI aerogel composites with excellent low- and medium-frequency sound-absorbing performance by sol-gel and supercritical CO2 drying. In this work, the properties (specific surface area, shrinkage and density), microstructure and sound-absorbing performance of the composites were studied, and the effects of particle size and added amount of HGM, and thickness of the composites on the sound-absorbing performance of the composites were analyzed. The results indicate that the density (0.156—0.208 g/cm3) and specific surface area (107.8—399.8 m2/g) of the composites are rela-ted to the stacking density and the added amount of HGM. In the range of 500—6 300 Hz, the peak value of sound-absorbing coefficient of blank sample (PI aerogel) with a thickness of 30 mm is 0.39, corresponding to 3 150 Hz. After introducing HGM component, the composites with the same thickness have peak values within the range of 1 000—2 500 Hz.The positions of peak values shift to the lower-frequency band compared with blank sample and the values are higher than 0.39, ranging from 0.56 to 0.87. According to the comparison of composites composed of HGM with different particle sizes, in the range of 1 000—2 500 Hz, the composite material composed of 29 μm HGM and PI aerogel has the best sound-absorbing performance, while the composite material composed of 40 μm HGM and PI aerogel has the worst sound-absorbing performance. In addition, with the increase of the amount of HGM, the peak value of the sound-absorbing coefficient of the composite material gradually shifts to the lower frequency band, and appears to decrease at first and then increase, and the peak value of the sound-absorbing coefficient shifts to the higher frequency band with the decrease in the material's thickness.
通讯作者:
*杨自春,海军工程大学动力工程学院教授、博士研究生导师。1989年7月本科毕业于海军工程学院轮机系,1996年9月取得华中科技大学固体力学专业博士学位,2013年4月至2013年10月在美国加州大学欧文分校作高级访问学者。获国家科技进步奖二等奖1项,军队科技进步奖一等奖3项、二等奖2项,先后入选教育部“新世纪优秀人才支持计划”“新世纪百千万人才工程”国家级人选,军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Journal of the American Ceramic Society、Cera-mics International等期刊发表研究论文100余篇。yangzichun11@sina.com
1 Reynolds J G, Coronado P R, Hrubesh L W. Energy Sources, 2001, 23, 831. 2 Reynolds J G, Coronado P R, Hrubesh L W. Journal of Non-Crystalline Solids, 2001, 292, 127. 3 Riffat S B, Qiu G. International Journal of Low-carbon Technologies, 2013, 8(1), 1. 4 Ruben Baetens, Bjørn Petter Jelle, Arild Gustavsen. Energy and Buil-dings, 2011, 43(4), 761. 5 Cuce E, Pinar M C, Christopher J. Renewable & Sustainable Energy Reviews, 2014, 34, 273. 6 Li Xiaohua, Yang Zichun, Li Kunfeng, et al. Journal of Sol-Gel Science and Technology, 2019, 92(3), 652. 7 Mojtaba Rahimabady, Eleftherios Christos Statharas, Kui Yao, et al. Applied Physics Letters, 2017, 111(24), 241601. 8 He Donglin, Guo Zhancheng, Liao Hongqiang, et al. Materials Reports, 2012, 26(S1), 303(in Chinese). 何冬林, 郭占成, 廖洪强, 等. 材料导报, 2012, 26(S1), 303. 9 Francesca M, Ann M A, Mary K C, et al. Applied Acoustics, 2018, 142, 123. 10 Feng Jingduo, Le Duyen, Son T N, et al. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2016, 506, 298. 11 Nga H N D, Thao P L, Quoc B T, et al. Materials Chemistry and Physics, 2020, 242, 122267. 12 Zahra Talebi, Parham Soltani, Negar Habibi, et al. Construction and Building Materials, 2019, 220, 76. 13 Wang J C, Shen J, Ni X Y, et al. Rare Metal Materials and Engineering, 2010, 39, 14. 14 Franco Cotana, Anna Laura Pisello, Elisa Moretti, et al. Building and Environment, 2014, 81, 92. 15 Fu Wuyou, Liu Shikai, Fan Wenhua, et al. Journal of Magnetism and Magnetic Materials, 2007, 316(1), 54. 16 Gu Jian, Wu Gaohui, Zhao Xiao. Journal of Functional Materials, 2007, 38(5), 764(in Chinese). 顾健, 武高辉, 赵骁. 功能材料, 2007, 38(5), 764. 17 Li Hao, Mei Zhiyuan, Zhu Xi. Polymer Materials Science & Engineering, 2011, 27(6), 102(in Chinese). 李浩, 梅志远, 朱锡. 高分子材料科学与工程, 2011, 27(6), 102. 18 Li Hao, Zhu Xi, Mei Zhiyuan. Journal of Functional Polymers, 2009(3), 298(in Chinese). 李浩, 朱锡, 梅志远. 功能高分子学报, 2009(3), 298. 19 Sun Weihong, Liu Bo, Gao Kongjun, et al. Engineering Plastics Application, 2017, 45(12), 112(in Chinese). 孙卫红, 刘波, 高孔军, 等. 工程塑料应用, 2017, 45(12), 112. 20 Li Xiaohui. Preparation and properties of pressure-resistant sound absor-bing polyurethane elastomer. Master's Thesis, National University of Defense Technology, China, 2018(in Chinese). 李校辉. 耐压型吸声聚氨酯弹性体制备与性能研究. 硕士学位论文, 国防科技大学, 2018. 21 Esfandiar Pakdel, Maryam Naebe, Sima Kashi, et al. Progress in Organic Coatings, 2020, 141, 105553. 22 Gao Guangpeng, Hu Yan, Jia Hongyu, et al. Journal of Physics and Chemistry of Solids, 2019, 135, 109105. 23 Cinzia Buratti, Francesca Merli, Elisa Moretti. Energy and Buildings, 2017, 152, 472. 24 Li Yang. Preparation and properties of lightweight foam glass sound absorbing material. Master's Thesis, North University of China, China, 2016(in Chinese). 李阳. 轻质泡沫玻璃吸声材料的制备及性能研究. 硕士学位论文, 中北大学, 2016. 25 Feng Jingduo, Le Duyen, Son T. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 506, 298. 26 Kyung Wha Oh, Duk Ki Kim, Seong Hun Kim. Fibers & Polymers, 2009, 10(5), 731.