Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22030076-8    https://doi.org/10.11896/cldb.22030076
  高分子与聚合物基复合材料 |
植物纤维增强聚合物基复合材料湿热老化研究进展
张儒, 姜宁*, 徐家川, 李迪
山东理工大学交通与车辆工程学院,山东 淄博 255000
Research Progress on Hygrothermal Aging of Plant Fiber Reinforced Polymer Composites
ZHANG Ru, JIANG Ning*, XU Jiachuan, LI Di
School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 25779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 植物纤维具有材料成本低、来源丰富、可再生、可生物降解、比强度和比模量高等优点,以植物纤维代替合成纤维作为增强体制备的绿色复合材料引起了学术界和工业界的普遍关注,并初步应用于汽车、建筑、航空航天等领域。与传统合成纤维相比,植物纤维自身的多层次、多尺度结构和与生俱来的亲水性使得其增强聚合物基复合材料在服役过程中容易受水分和温度的影响,引起力学性能下降,可能导致整个结构的破损甚至失效,从而阻碍其应用和发展。近年来,学者们对植物纤维增强聚合物基复合材料湿热老化进行了相关的研究。本文从复合材料吸水行为、影响复合材料吸水的因素、湿热老化对复合材料力学性能的影响、复合材料界面失效机理、复合材料湿热老化机理和化学处理对复合材料湿热老化的影响等几个方面综述了国内外植物纤维增强聚合物基复合材料湿热老化研究现状,希望为研究植物纤维增强聚合物基复合材料湿热老化的学者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张儒
姜宁
徐家川
李迪
关键词:  植物纤维  复合材料  湿热老化  老化机理    
Abstract: Plant fibers have their advantageous characteristics such as low cost, wide sources, renewability, biodegradability, high specific modulus and strength. Now, the green composites prepared with plant fiber instead of synthetic fiber have attracted extensive attention from academia and industry, and have been preliminarily used in automotive, construction, aerospace and other fields. Compared to traditional synthetic fibres, plant fiber has multi-layered and multi-scale structure and inherent hydrophilicity which make its reinforced polymer matrix composite susceptible to the effects of moisture and temperature during service. These can cause a deterioration in mechanical properties and the damage or even failure of the whole structure, thus hindering the application and development of plant fiber composites. In recent years, some researchers have studied the hygrothermal aging mechanism of plant fiber reinforced polymer matrix composites. This paper reviews the current research of water absorption behavior, factors affecting water absorption, influence of hygrothermal aging on mechanical properties, interface failure mechanism, hygrothermal aging mechanism and influence of chemical treatment on hygrothermal aging of plant fiber reinforced composites. It is expected to provide refe-rences for further research in this field.
Key words:  plant fiber    composite    hydrothermal aging    aging mechanism
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TB332  
基金资助: 山东省自然科学基金青年项目(ZR2020QA040);中国博士后科学基金(2021M691853)
通讯作者:  *姜宁,2018年在同济大学获得博士学位,现为山东理工大学交通与车辆工程学院讲师、硕士研究生导师。主要从事先进复合材料耐久性、复合材料高性能化、汽车轻量化技术及应用等研究工作。先后主持中国博士后基金1项、山东省自然科学基金项目1项,与企业合作完成多项横向课题,参与国家级科研项目3项。发表学术论文10余篇,其中SCI论文8篇。jiangning@sdut.edu.cn   
作者简介:  张儒,2020年在山东理工大学取得本科学位,现为山东理工大学交通与车辆工程学院硕士研究生,主要研究领域为植物纤维增强聚合物基复合材料湿热老化。
引用本文:    
张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
ZHANG Ru, JIANG Ning, XU Jiachuan, LI Di. Research Progress on Hygrothermal Aging of Plant Fiber Reinforced Polymer Composites. Materials Reports, 2024, 38(2): 22030076-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030076  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22030076
1 Zhang C H, Wang R H, Chen Q L, et al. Materials Reports, 2007, 21(10), 35 (in Chinese).
张春红, 王荣华, 陈秋玲, 等. 材料导报, 2007, 21(10), 35.
2 Estrada L H, Pillay S, Vaidya U. In: Conference Record of the 2008 ACCE 4th Annual Automotive Composites Conference and Exhibition. Michigan, 2008, pp. 16.
3 Bax B, Müssig J. Composites Science and Technology, 2008, 68(7), 1601.
4 Oksman K, Skrifvars M, Selin J F. Composites Science and Technology, 2003, 9(63), 1317.
5 Yeo J C C, Muiruri J K, Thitsartarn W, et al. Materials Science and Engineering C, 2018, 92, 1092.
6 Tong S Y, Lim P N, Wang K, et al. Materials Technology, 2018, 33(11), 754.
7 Gorshkova T, Brutch N, Chabbert B, et al. Critical Reviews in Plant Sciences, 2012, 31(3), 201.
8 Bessadok A, Langevin D, Gouanvé F, et al. Carbohydrate Polymers, 2009, 76(1), 74.
9 Moudood A, Rahman A, Öchsner A, et al. Journal of Reinforced Plastics and Composites, 2019, 38(7), 323.
10 Silva A M B, Luz S M, Siva I, et al. Sustainable Polymer Composites and Nanocomposites, 2019, 977, 999.
11 Biagiotti J, Puglia D, Kenny J M. Journal of Natural Fibers, 2004, 1(2), 37.
12 Kabir M M, Wang H, Lau K T, et al. Composites Part B: Engineering, 2012, 43(7), 2883.
13 Bian J Y, Liu J, Bao Z. Materials Reports, 2016, 30(Z2), 340 (in Chinese).
边佳燕, 刘钧, 鲍铮. 材料导报, 2016, 30(Z2), 340.
14 Idolor O, Guha R, Berkowitz K, et al. In: Conference Record of the 2020 35th Proceedings of the American Society for Composites 35th Technical Conference. North Carolina, 2020, pp. 27695.
15 Scida D, Assarar M, Poilâne C, et al. Composites Part B: Engineering, 2013, 48, 51.
16 Abanilla M A, Li Y, Karbhari V M. Composites Part B: Engineering, 2005, 37(2), 200.
17 Weitsman Y. International Journal of Solids & Structures, 1979, 15(9), 701.
18 Weitsman Y J. International Journal of Solids and Structures, 1987, 23(7), 1003.
19 Weitsman Y, Beltzer A I. International Journal of Solids and Structures, 1992, 29(11), 1417.
20 Saikia D. International Journal of Thermophysics, 2010, 31(4), 1020.
21 Jiang N, Li Y, Li D, et al. Composites Science and Technology, 2020, 199, 108313.
22 Kumar S, Meena R S, Singh R K, et al. Scientific Reports, 2021, 11(1), 1.
23 Panthapulakkal S, Sain M. Journal of Composite Materials, 2007, 41(15), 1871.
24 Moudood A, Rahman A, Khanlou H M, et al. Composites Part B: Engineering, 2019, 171, 284.
25 Jiang N, Li Y, Li Y, et al. Polymer Degradation and Stability, 2020, 178, 109214.
26 Duigou L A, Davies P, Baley C. Polymer Degradation and Stability, 2009, 94(7), 1151.
27 Bledzki A K, Faruk O. Composites Science and Technology, 2004, 64(5), 693.
28 Al-Maharma A Y, Al-Huniti N. Journal of Composites Science, 2019, 3(1), 27.
29 Toubal L, Cuillière J C, Bensalem K, et al. Polymer Composites, 2016, 37(8), 2342.
30 Singh J I P, Singh S, Dhawan V. Polymers and Polymer Composites, 2020, 28(4), 273.
31 Chen H, Miao M, Ding X. Composites Part A: Applied Science and Manufacturing, 2009, 40(12), 2013.
32 Peirce F T. Journal of the Textile Institute Transactions, 1929, 20(6), 133.
33 Dhakal H N, Zhang Z Y, Bennett N, et al. Journal of Composite Mate-rials, 2014, 48(11), 1399.
34 Kushwaha P K, Kumar R. Polymer-Plastics Technology and Engineering, 2009, 49(1), 45.
35 Cheour K, Assarar M, Scida D, et al. Composite Structures, 2016, 152, 259.
36 Jiang N, Li Y, Yu T, et al. Polymer Composites, 2020, 41(3), 1003.
37 Jia Y L. Acta Materiae Compositae Sinica, 2022, 39(2), 608 (in Chinese).
贾云龙. 复合材料学报, 2022, 39(2), 608.
38 Pisupati A, Bonnaud L, Deléglise-Lagardère M, et al. Applied Composite Materials, 2021, 28(3), 633.
39 Panthapulakkal S, Sain M. Journal of Applied Polymer Science, 2007, 103(4), 2432.
40 Espert A, Vilaplana F, Karlsson S. Composites Part A: Applied Science and Manufacturing, 2004, 35(11), 1267.
41 Assarar M, Scida D, El Mahi A, et al. Materials & Design, 2011, 32(2), 788.
42 Stamboulis A, Baillie C A, Garkhail S K, et al. Applied Composite Materials, 2000, 7(5), 273.
43 Hu R H, Sun M, Lim J K. Materials & Design, 2010, 31(7), 3167.
44 Chizyuka C G, Munakaampe G M, Kanyanga S B. Journal of Natural and Applied Sciences, 2016, 2(1), 39.
45 Stamboulis A, Baillie C A, Peijs T. Composites Part A: Applied Science and Manufacturing, 2001, 32(8), 1105.
46 Li Y, Xue B. Polymer Degradation and Stability, 2016, 126, 144.
47 Duigou L A, Davies P, Baley C. Composites Part A: Applied Science and Manufacturing, 2013, 48, 121.
48 Zhou Y, Fan M, Chen L. Composites Part B: Engineering, 2016, 101, 31.
49 Amiandamhen S O, Meincken M, Tyhoda L. Fibers and Polymers, 2020, 21(4), 677.
50 Brodowsky H, Mäder E. Composites Science and Technology, 2012, 72(10), 1160.
51 Sethi S, Ray B C. Advances in Colloid and Interface Science, 2015, 217, 43.
52 Azwa Z N, Yousif B F, Manalo A C, et al. Materials & Design, 2013, 47, 424.
53 Jiang N, Yu T, Li Y. Journal of Polymers and the Environment, 2018, 26(8), 3176.
54 Jiang N, Yu T, Li Y, et al. Composites Science and Technology, 2019, 173, 15.
55 Cadu T, Van Schoors L, Sicot O, et al. Industrial Crops and Products, 2019, 141, 111730.
56 Paunonen S, Berthold F, Immonen K. Journal of Applied Polymer Science, 2020, 137(42), 49617.
57 Si S, Tang Q, Li X G. Journal of Renewable Materials, 2021, 9(12), 2209.
58 Yu T, Sun F, Lu M, et al. Polymer Composites, 2018, 39(4), 1098.
59 Ma Y F, Zhang W, Wang C P, et al. Materials Reports, 2011, 25(19), 5 (in Chinese).
马玉峰, 张伟, 王春鹏, 等. 材料导报, 2011, 25(19), 5.
60 Wang W, Fu R, Deng Q, et al. Fibers and Polymers, 2020, 21(12), 2888.
61 George J, Sreekala M S, Thomas S. Polymer Engineering & Science, 2001, 41(9), 1471.
62 Hamid M R Y, Ghani M H A, Ahmad S. Industrial Crops & Products, 2012, 40, 96.
63 Dittenber D B, Gangarao H. Composites Part A, 2012, 43(8), 1419.
64 Fiore V, Bella G D, Valenza A. Composites Part B:Engineering, 2015, 68, 14.
65 Han Y H, Han S O, Cho D, et al. Composite Interfaces, 2007, 14(5), 559.
66 Li X, Tabil L G, Panigrahi S. Journal of Polymers and the Environment, 2007, 15(1), 25.
67 Jain D, Kamboj I, Bera T K, et al. International Journal of Heat and Mass Transfer, 2019, 130, 431.
68 Atiqah A, Jawaid M, Ishak M R, et al. Journal of Natural Fibers, 2018, 15(2), 251.
69 Mouhoubi S, Bourahli M E H, Osmani H, et al. Journal of Natural Fibers, 2017, 14(2), 239.
70 Daniels M W, Francis L F. Journal of Colloid and Interface Science, 1998, 205 (1), 191.
71 Nishiyama N, Horie K, Asakura T. Journal of Colloid and Interface Science, 1989, 129(1), 113.
72 Vrancken K C, De Coster L, Van Der Voort P, et al. Journal of Colloid and Interface Science, 1995, 170(1), 71.
73 Salon M C B, Gerbaud G, Abdelmouleh M, et al. Magnetic Resonance in Chemistry, 2007, 45(6), 473.
74 Kusmono, Hestiawan H, Jamasri. Journal of Materials Research and Technology, 2020, 9(3), 4410.
75 Supri A G, Lim B Y. Journal of Physical Science, 2009, 20(2), 85.
76 Siqueira G, Bras J, Dufresne A. Langmuir, 2010, 26(1), 402.
77 Karmarkar A, Chauhan S S, Modak J M, et al. Composites Part A: Applied Science and Manufacturing, 2007, 38(2), 227.
78 Rozman H D, Kumar R N, Khalil H P S A, et al. European Polymer Journal, 1997, 33(8), 1213.
79 Khalil H P S A, Rozman H D, Ahmad M N, et al. Polymer-Plastics Technology and Engineering, 2000, 39(4), 757.
[1] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[2] 孔令云, 席晗. 道路沥青紫外老化及抗老化材料研究综述[J]. 材料导报, 2024, 38(1): 22060166-13.
[3] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[4] 赵新涛, 姜宁, 王明道, 李骏腾, 李迪, 谭洪生. 纤维增强热塑性复合材料拉挤成型工艺研究进展[J]. 材料导报, 2024, 38(1): 22050237-9.
[5] 张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
[6] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[7] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[8] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[9] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[10] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[11] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[12] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[13] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[14] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[15] 陈双, 雷子萱, 徐力, 李嘉玄, 陈栋梁, 强军锋, 刘育红. 线型酚醛树脂结构改性的研究进展[J]. 材料导报, 2023, 37(23): 22050233-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed