Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23090112-11    https://doi.org/10.11896/cldb.23090112
  无机非金属及其复合材料 |
g-C3N4基纳米复合材料的合成及电化学传感性能研究
于巧玲1,2, 刘成宝1,2,3,*, 郑磊之1,2,3, 陈丰1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
1 苏州科技大学江苏省环境功能材料重点实验室,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心,江苏 苏州 215009
4 江苏省陶瓷研究所有限公司,江苏 宜兴 214221
5 苏州市环境科学研究所,江苏 苏州 215007
Synthesis and Electrochemical Sensing Properties of g-C3N4-based Nanocomposites
YU Qiaoling1,2, LIU Chengbao1,2,3,*, ZHENG Leizhi1,2,3, CHEN Feng1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
4 Jiangsu Province Ceramics Research Institute Co., Ltd., Yixing 214221, Jiangsu, China
5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China
下载:  全 文 ( PDF ) ( 25216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)是一种新型的半导体纳米材料,较高的比表面积、良好的稳定性赋予了其强吸附性和易于修饰等特点,有望用于解决电化学传感器所要求的低成本、快速检测、良好的灵敏度和优异的选择性等难题。本文对g-C3N4基纳米复合材料的合成方法及电化学传感性能进行了综述,在此基础上重点介绍了基于g-C3N4纳米复合材料的电化学传感器在食品、环境、生物医药检测等领域中的应用,并展望了开发复合材料传感器的重要性,以期为g-C3N4基纳米复合材料的合成及应用拓展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于巧玲
刘成宝
郑磊之
陈丰
邱永斌
孟宪荣
陈志刚
关键词:  g-C3N4  复合材料  电化学传感  食品安全检测  环境检测    
Abstract: Graphitic phase carbon nitride(g-C3N4) is a new type of semiconductor nanomaterial with high specific surface area, excellent physicochemical stability to endow it with strong adsorption and easy modification, which is expected to be used to solve the problems of low cost, rapid detection, brilliant sensitivity and excellent selectivity required by electrochemical sensors. In this summary, the synthesis methods of g-C3N4-based nanocomposites and the enhancement of electrochemical sensing performance were reviewed. Then, the application of electrochemical sensors based on g-C3N4 nanocomposites in food additives, environmental pollutants, biomedicine detection and other fields were emphatically introduced. The further development of composite sensors was also envisioned to provide a chance for g-C3N4-based nanocomposites synthesis and their application.
Key words:  g-C3N4    composite material    electrochemical sensing    food safety testing    environmental detection
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB34  
基金资助: 江苏省自然科学基金(BK20180103;BK20180971);苏州市科技发展计划项目(民生科技——关键技术应用研究)(SS202036)
通讯作者:  *刘成宝,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。主要从事二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价。Lcb@mail.usts.edu.cn   
作者简介:  于巧玲,现为苏州科技大学材料科学与工程学院研究生,在刘成宝副教授的指导下进行研究。目前主要研究领域为食品、环境和能源材料的设计合成及其传感性能评价。
引用本文:    
于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
YU Qiaoling, LIU Chengbao, ZHENG Leizhi, CHEN Feng, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Synthesis and Electrochemical Sensing Properties of g-C3N4-based Nanocomposites. Materials Reports, 2025, 39(3): 23090112-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090112  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23090112
1 Afsah H L, Hajeb P, Ara P, et al. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5), 1563.
2 Hu Y, Shao W B, Zhu D Z, et al. China Quality Supervision, 2021(11), 76(in Chinese).
胡阳, 邵伟标, 朱德志, 等. 中国质量监管, 2021(11), 76.
3 Nisar A, Shah A, Zahid A, et al. Journal of the Electrochemical Society, 2018, 165(3), 67.
4 Elumalai S, Mani V, Jeromiyas N, et al. Microchimica Acta, 2019, 187(1), 33.
5 Yadav D K, Gupta R, Ganesan V, et al. Microchimica Acta, 2017, 184(7), 1951.
6 Liu B, Nie X, Tang Y, et al. Langmuir, 2021, 37(16), 4859.
7 Li Y, zhang Q, Lu Y, et al. Ceramics International, 2022, 48(1), 1306.
8 Hung Y, Chen B, Duan J, et al. Angewandte Chemie, 2020, 59(9), 3728.
9 Liu Z, Gou W, Liu X, et al. Chenical Physics Letters, 2021, 781, 138951.
10 Xu Y, Liu C B, Zheng L Z, et al. Materials Reports, 2024, 38(21), 23060180. (in Chinese).
徐杨, 刘成宝, 郑磊之, 等. 材料导报, 2024, 38(21), 23060180.
11 Iqbal W, Yang B, Zhao X, et al. Catal Science & Technology, 2018, 18(8), 4576.
12 Kumar A, Sharma G, Stadler F J, et al. Chemical Engineering Journal, 2019, 382, 122937.
13 Liu X L, Ma R, Zhuang L, et al. Critical Reviews in Environmental Science and Technology, 2021, 51(8), 751.
14 Aka B, Gsa B, Ak C, et al. Applied Catalysis B:Environmental, 2020, 284, 119808.
15 Zhao X S, You Y Y, Huang S B, et al. Applide Catalysis B:Environmental, 2020, 278, 119251.
16 Yu Q L, Liu C B, Jin T, et al. Materials Reports, 2024, 38(11), 22090279(in Chinese).
于巧玲, 刘成宝, 金涛, 等. 材料导报, 2024, 38(11), 22090279.
17 Yi W W, Han C X, Li Z P, et al. Acta Scientiae Cricumatantiae, 2022, 42(4), 248(in Chinese).
伊雯雯, 韩春晓, 李忠平, 等. 环境科学学报, 2022, 42(4), 248.
18 Wang Z W, Liu H J, Li C Y, et al. Talanta, 2020, 208, 120410.
19 Xavier B J, Umesh N M, Sea F W, et al. New J Chem, 2021, 45, 18131.
20 Huang Y, Tan Y, Feng C, et al. Microchimica Acta, 2018, 186(1), 10.
21 Cao J, Qin C, Wang Y. et al. Journal of Alloys and Compounds, 2017, 728, 1101.
22 Chang W D, Bao C J, Xu J, et al. Journal of Food Safety & Quality, 2023, 14(2), 226(in Chinese).
常惟丹, 鲍长俊, 徐军. 食品安全质量检测学报, 2023, 14(2), 226.
23 Adil S, Sayfa B, Lalita S, et al. Talanta, 2022, 241, 123257.
24 Mohammad K H, Mehdi S N, Rozhin D, et al. Analytica Chimica Acta, 2022, 1203, 339662.
25 Zhang L, Liu C, Wang Q, et al. Microchimica Acta, 2020, 187(2), 149.
26 Atacan K, zacar M. Materials Chemistry and Physics, 2021, 266, 124527.
27 Xiao F, Li H, Yan X, et al. Analytica Chimica Acta, 2020, 1103, 84.
28 Rajaji U, Selvi S V, Chen S M, et al. Microchimica Acta, 2020, 187(8), 459.
29 Zhou X, Wang Y, Wang Y, et al. Journal of Hazardous Materials, 2020, 388, 121759.
30 Selvam A, Sheik M, Badhusha M, et al. Diamond and Related Materials, 2023, 136, 109908.
31 Jigyasa, Pratibha, Jaspreet Kaur Rajput, et al. Journal of Electroanalytical Chemistry, 2020, 878, 114605.
32 Mohammad A, Khan M E, Cho M H, et al. Journal of Alloys and Compounds, 2020, 816, 152522.
33 Zou J, Wu S, Liu Y, et al. Carbon, 2018, 130, 652.
34 Li Y, Cheng C, Yang Y, et al. Journal of Alloys and Compounds, 2019, 798, 764.
35 Nigussie A, Ananda M H, Abdissa B, et al. RSC Advances, 2022, 12, 29959.
36 Alizadeh T, Nayeri S, Habibi Y A, et al. Sensors and Actuators B:Che-mical, 2019, 279, 245.
37 Keerthi M, Manavalan S, Chen S M, et al. Journal of the Electrochemical Society, 2019, 166(14), 1245.
38 Wang M, Zhang M, Zhu J, et al. ChemElectroChem, 2020, 7(6), 1373.
39 Guo H, Su Y, Shen Y, et al. Journal of Colloid and Interface Science, 2019, 536, 646.
40 Tian Y L, Cui J, Cheng X Y. Modern Food, 2022, 28(2), 29(in Chinese).
田娅玲, 崔俊, 程晓莹. 现代食品, 2022, 28(2), 29.
41 Wu L, Zhang C H, Long Y X, et al. Critical Reviews in Food Science and Nutrition, 2021, 62(30), 8497.
42 Sanjay B P, Gagan S K, Sandeep S, et al. Chemosensors, 2022, 10, 425.
43 Rasi F, Sadeghi S, Ghalkhani M, et al. Journal of the Electrochemical Society, 2022, 169, 12.
44 Bijad M, Karimi M H, Farsi M, et al. Journal of Food Measurement and Characterization, 2018, 12, 634.
45 Wang L, Fan Z Y, Yue F, et al. Food Chemistry, 2024, 430, 137027.
46 Cheng Q, Liu X Y, Yu H. et al. Journal of Fluorescence, 2019, 29, 719.
47 Li J D, Wang X C, Chen X L, et al. Food Chemistry, 2022, 389, 133086.
48 Deepak B, Kuang Y L, Neethu S, et al. Journal of Hazardous Materials, 2021, 406, 124739.
49 SubramaniyanV, Sea F W. New Journal of Chemistry, 2023, 19, 9229.
50 Haci A D, Müge M K, Inan K, et al. Biosensors, 2023, 13, 725.
51 Mehmet L Y. Chemosphere, 2022, 301, 134766.
52 Farzaneh M, Leila N. Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57(6), 489.
53 Raja N, Chen C W, Dong C D, et al. Carbon, 2023, 208, 410.
54 Zou J, Mao D, Li N, et al. Applied Surface Science, 2019, 4, 1.
55 Bu L J, Xie Q J, Ming H, et al. Journal of Alloys and Compounds, 2020, 823, 153723.
56 Jiang W, Chen P H, Li X Q, et al. Diamond & Related Materials, 2021, 108557.
57 Guo H, Shen Y L, Hui Y Y. et al. Microchimica Acta, 2019, 186, 819.
58 Singh A K, Jaiswal N, Gautam R K, et al. Journal of Electroanalytical Chemistry, 2021, 887, 115170.
59 Sangita K S, Sumanta K M, Madhusudan M, et al. Optical Fiber Technology, 2023, 81, 103518.
60 Kapoor A, Rajput J K. Journal of Food Composition and Analysis, 2023, 115, 105033.
61 Mohammad A K, Mohsen M, et al. Microchemical Journal, 2022, 179, 107421.
62 Farzaneh M, Leila N, Elham P, et al. Journal of the Iranian Chemical Society, 2022, 19, 3377.
63 Che H C, Tian X K, Guo F, et al. Analytical Chemistry, 2023, 13, 104664
64 Atul K, Jaspreet K R. Journal of Food Composition and Analysis, 2023, 115, 105033.
65 Li J Y, Xie K R, Wang Y T, et al. Chemosensors, 2023, 11, 296.
66 Nipun S, Arun K S, Subbiah A, et al. Ieee Sensors Journal, 2023 23, 10308.
67 Amira N, Salah K, Fathi T, et al. Journal of Applied Electrochemistry, 2023, 11, 117439.
68 Huang R H, He S B, Yang F, et al. Journal of Environmental Chemical Engineering, 2023, 11, 110953
69 Habibulla I, Jungeun A, Kyumin J, et al. Journal of Alloys and Compounds, 2023, 948, 169715.
70 Ping P P, Sheng W, Si Y C, et al. Analytical and Bioanalytical Chemistry, 2022, 414, 7325.
71 Yu S L, Fu R C, La Y B, et al. RSC Advancees, 2022, 12, 22518.
72 Yola L, Atar N. Composites Part B:Engineering, 2019, 175, 107113.
73 Alizadeh T, Nayeri S, Hamidi N, et al. RSC Advances, 2019, 9, 13096.
74 Chen Y, Zhang X F, Wang A J, et al. Microchim Acta, 2019, 186.
75 Ren S F, Cao L, Liu X H, et al. Ionics, 2023, 29, 5491.
76 Soner Ç, Bekir Ç, Sadi S, et al. Microchemical Journal, 2022, 178, 107360.
77 Jeyaraman A, Ramachandran R, Shen M C, et al. Chemosphere, 2022, 296, 133997.
78 Zahra A, Seyed K H D, Mohammad A B, et al. Journal of Alloys and Compounds, 2023, 941, 168958.
79 Wang Y Z, Li S S, Gao Y Z, et al. Chemosphere, 2023, 331, 138769.
80 Zhang H F, Qi S L, Wang H D, et al. Symmetry, 2023, 15, 896.
81 Mahin B, Hakimeh T, Elmuez A D, et al. Arabian Journal of Chemistry, 2023, 16, 104963.
82 Madasu S, Shweta J M, Sondos A A, et al. Materials Chemistry and Physics, 2024, 312, 128650.
83 Su Y H, Su L X, Ran J, et al. Analytica Chimica Acta, 2023, 1263, 341279.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[3] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[4] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[5] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[6] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[7] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[8] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[9] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[12] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[13] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[14] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[15] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed