Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22090022-9    https://doi.org/10.11896/cldb.22090022
  金属与金属基复合材料 |
非晶合金薄膜的复合强韧化研究进展
柯松, 陈卓坤, 艾诚, 李尧, 虢婷*, 孙志平
长安大学材料科学与工程学院,西安 710064
Research Progress on Composite Strengthening and Toughening of Amorphous Alloy Thin Films
KE Song, CHEN Zhuokun, AI Cheng, LI Yao, GUO Ting*, SUN Zhiping
School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 29391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子行业向便携化、智能化、柔性化方向不断发展,非晶合金薄膜由于强度和硬度高、耐磨损及耐腐蚀性好、表面粗糙度低等诸多性能优势,在微纳机电系统、传感器和生物医学方面显示出巨大的应用潜力,成为国内外炙手可热的高新技术材料之一。然而,剪切局域化和应变软化导致的室温脆性是非晶合金薄膜的致命问题,严重制约着其在结构工程领域中的广泛应用。因此,非晶合金薄膜的强韧化设计是目前的研究热点和前沿课题。近年来,随着生产工业和研发技术不断进步,各种新型非晶合金薄膜材料不断涌现。特别地,复合化具有高度的设计性和可控性,在非晶合金薄膜的强韧化研究方面得到广泛关注。本文回顾了非晶合金复合薄膜的几种主要结构设计策略,围绕“微观结构-力学性能-强韧化机制”的本构关系,重点阐述了不同微观结构对非晶合金薄膜力学性能和变形机理的影响,并对该课题研究进程中所面临的主要问题和挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柯松
陈卓坤
艾诚
李尧
虢婷
孙志平
关键词:  非晶合金  强韧化  复合材料  变形机制  力学行为    
Abstract: With the continuous development of the electronics industry towards the direction of portability, intelligence and flexibility, amorphous alloy films have exhibited great application potential in micro-and nanoelectromechanical systems, sensors and biomedicine, owing to high strength and hardness, good wear and corrosion resistance, low surface roughness, and many other performance advantages. Thus they have become one of the most popular high-tech materials at home and abroad in recent decades. However, the brittleness at room temperature caused by shear localization and strain softening is a fatal problem for amorphous alloy films, which seriously restricts their wide application in the field of structural engineering. Therefore, strengthening and toughening of amorphous alloy films becomes research hotspot and frontier topic. In recent years, with the continuous development of production and research technology, a variety of new amorphous alloy film materials continue emerging. In particular, due to the high designability and controllability, composite has received extensive attention in the study of strengthening and toughening of amorphous alloy thin film. In this paper, we review several important structural design strategies of amorphous alloy composite films. Based on the constitutive relationship of ‘microstructure-mechanical property-strengthening and toughening mechanism', we emphatically describe the influence of different microstructures on mechanical properties and deformation mechanisms of amorphous alloy films. The paper also includes a brief but prospective discussion on main problems and challenges in the research of this subject.
Key words:  amorphous alloy    strengthening and toughening    composite material    deformation mechanism    mechanical behavior
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TG139.8  
基金资助: 陕西省自然科学基础项目(2023-JC-QN-0396);陕西省重点研发计划项目(2023-YBGY-435)
通讯作者:  *虢婷,长安大学材料科学与工程学院讲师。2019年12月获得西安交通大学材料科学与工程专业博士学位。2019年12月底任长安大学材料科学与工程学院材料成型及控制工程系讲师。目前主要从事基于先进金属结构薄膜材料(包括纳米晶、非晶、及相关纳米复合材料)微结构调控、表征及破坏模式和预防相关的研究。目前在国外学术刊物上发表多篇SCI论文,包括Materials Science and Engineering: A、Journal of Alloys and Compounds、Materials Letters等国际知名期刊。guoting27@chd.edu.cn   
作者简介:  柯松,2020年6月毕业于湖北工程学院,获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在孙志平教授及虢婷讲师的指导下进行研究。目前主要研究领域为非晶合金薄膜的力学行为和相关变形机制。
引用本文:    
柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
KE Song, CHEN Zhuokun, AI Cheng, LI Yao, GUO Ting, SUN Zhiping. Research Progress on Composite Strengthening and Toughening of Amorphous Alloy Thin Films. Materials Reports, 2024, 38(5): 22090022-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090022  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22090022
1 Woo J H, Park S Y, Koo D, et al. ACS Applied Materials & Interfaces, 2022, 14(4), 5578.
2 Rajan S T, Arockiarajan A. Journal of Alloys and Compounds, 2021, 876, 159939.
3 Li Z, Ma J. Materials Today Advances, 2021, 12, 100164.
4 Liu S Y, Cao Q P, Zhang D X, et al. Advanced Engineering Materials, 2019, 21, 1900046.
5 Jiang Q K, Liu P, Cao Q P, et al. Acta Materialia, 2013, 61(12), 4689.
6 Huang H, Zhang Y. Chinese Journal of Engineering, 2021, 43(1), 119 (in Chinese).
黄浩, 张勇. 工程科学学报, 2021, 43(1), 119.
7 Xian H J, Cao C R, Shi J A, et al. Applied Physics Letters, 2017, 111, 121906.
8 Panagiotopoulos N T, Georgarakis K, Jorge A M, et al. Materials & Design, 2020, 192, 108770.
9 Tian L, Li C Y, Zhai J S, et al. Rare Metals, 2021, 45(8), 998 (in Chinese).
田霖, 李春燕, 翟建树, 等. 稀有金属, 2021, 45(8), 998.
10 Wei X, Feng Z, Yu H C, et al. World Science and Technology Research and Development, 2021, 43(4), 403 (in Chinese).
魏秀, 冯泽, 于汉超, 等. 世界科技研究与发展, 2021, 43(4), 403.
11 Shi B, Wang J H, Wei F A. Materials Reports, 2019, 33(7), 1221 (in Chinese).
时博, 王金辉, 魏福安. 材料导报, 2019, 33(7), 1221.
12 Wang N, Cao Q P, Yao W, et al. Scripta Materialia, 2021, 198, 113832.
13 Ghidelli M, Idrissi H, Gravier S, et al. Acta Materialia, 2017, 131, 246.
14 Jang D, Greer J R. Nature Materials, 2010, 9, 215.
15 Ju L, Shimizu F, Ogata S. Acta Materialia, 2006, 54, 4293.
16 Cao A J, Cheng Y Q, Ma E. Acta Materialia, 2009, 57, 5146.
17 Champion Y, Thurieau N. Scientific Reports, 2020, 10, 10801.
18 Shan Z W, Li J, Cheng Y Q, et al. Physical Review B, 2008, 77, 155419.
19 Deng Q S, Cheng Y Q, Yue Y H, et al. Acta Materialia, 2011, 59, 6511.
20 Sun B, Pauly S, Tan J, et al. Acta Materialia, 2012, 60, 4160.
21 Wu G, Chan K C, Zhu L, et al. Nature, 2017, 545, 80.
22 Wu G, Liu C, Sun L, et al. Nature Communications, 2019, 10, 5099.
23 Chen Z Q, Li M C, Cao J S, et al. Journal of Materials Science & Technology, 2022, 99, 178.
24 Zhang J Y, Liu G, Sun J. Materials China, 2016, 35(5), 374 (in Chinese).
张金钰, 刘刚, 孙军. 中国材料进展, 2016, 35(5), 374.
25 Jiang L, Bai Z T, Powers M, et al. Materials Science and Engineering A, 2022, 848, 143144.
26 Doan D Q. International Journal of Mechanical Sciences, 2022, 223, 107297.
27 Marimuthu K P, Han G, Lee H. Journal of Materials Research and Technology, 2022, 16, 216.
28 Cao Q P, Lv L B, Wang X D, et al. Materials Today Nano, 2021, 14, 100114.
29 Liu S Y, Cao Q P, Yu Q, et al. Journal of Non-Crystalline Solids, 2019, 510, 112.
30 Obeydavi A, Shafyei A, Rezaeian A, et al. Journal of Non-Crystalline Solids, 2020, 527, 119718.
31 Yao W, Cao Q P, Liu S Y, et al. Acta Materialia, 2020, 194, 13.
32 Zhong K, Zhang Z B, Zou Y, et al. Materias Reports, 2021, 35 (17), 17019 (in Chinese).
种凯, 张志彬, 邹勇, 等. 材料导报, 2021, 35(17), 17019.
33 Zhao B, Yang G H, Zeng F, et al. Acta Materialia, 2003, 51, 5093.
34 Luo P, Cao C R, Zhu F, et al. Nature Communications, 2018, 9, 1389.
35 Saitou M, Okudaira Y, Oshikawa W. Journal of the Electrochemical Society, 2003, 150(3), C140.
36 Lan S, Guo C Y, Zhou W Z, et al. Communications Physics, 2019, 2, 117.
37 Schuh C A, Detor A J. Acta Materialia, 2007, 55, 371.
38 Brink T, Peterlechner M, Rösner H, et al. Physical Review Applied, 2016, 5, 054005.
39 Liu L G, Dong C, Wu A M, et al. Surface Technology, 2020, 49 (5), 11 (in Chinese).
刘林根, 董闯, 吴爱民, 等. 表面技术, 2020, 49(5), 11.
40 Lee M L, Li Y, Schuh C A. Acta Materialia, 2004, 52, 4121.
41 Hofmann D C, Suh J Y, Wiest A, et al. Nature, 2008, 451, 1085.
42 Liu X F, Chen Y, Jiang M Q, et al. Materials Science and Engineering A, 2017, 680, 121.
43 Kuan S Y, Huang J C. Thin Solid Films, 2014, 561, 43.
44 Sun G Y, Chen G, Liu C T, et al. Scripta Materialia, 2006, 55, 375.
45 Wang C X, Wang T, Li B, et al. Materials Science and Engineering A, 2021, 799, 140146.
46 Gammer C, Rentenberger C, Beitelschmidt D, et al. Materials & Design, 2021, 209, 109970.
47 Khalajhedayati A, Rupert T J. Jom, 2015, 67(12), 2788.
48 Khalajhedayati A, Pan Z, Rupert T J. Nature Communications, 2016, 7, 10802.
49 Schuler J D, Rupert T J. Acta Materialia, 2017, 140, 196.
50 Schuler J D, Donaldson O K, Rupert T J. Scripta Materialia, 2018, 154, 49.
51 Wu G, Balachandran S, Gault B, et al. Advanced Materials, 2020, 32(34), 2002619.
52 Gan K F, Yan D S, Huang Y J. Computational Materials Science, 2022, 206, 111287.
53 Ming K S, Zhu Z W, Zhu W Q, et al. Science Advances, 2022, 8, 2884.
54 Katnagallu S, Wu G, Singh S P, et al. Small, 2020, 16, 2004400.
55 Zhang J Y, Liu G, Sun J. Scientific Reports, 2013, 3, 2324.
56 Kim J Y, Jang D, Greer J R. Advanced Functional Materials, 2011, 21(23), 4550.
57 Park S Y, Gwak E J, Huang M, et al. Scripta Materialia, 2017, 139, 63.
58 Wang Y M, Li J, Hamza A V, et al, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27), 11155.
59 Zhang J Y, Liu G, Sun J. Acta Materialia, 2014, 66, 22.
60 Liu M C, Du X H, Lin I C, et al. Intermetallics, 2012, 30, 30.
61 Kim J Y, Gu X, Wraith M, et al. Advanced Functional Materials, 2012, 22(9), 1972.
62 Chang S Y, Chen B J, Hsiao Y T, et al. Materials Chemistry and Physics, 2018, 213, 277.
63 Sahu B P, Wu W Q, Wang J, et al. Physical Review Materials, 2022, 6, 094002.
64 Knorr I, Cordero N M, Lilleodden E T, et al. Acta Materialia, 2013, 61(13), 4984.
65 Wu G, Liu C, Brognara A, et al. Materials Today, 2021, 51, 6.
66 Rao S G, Shu R, Wang S Y, et al. Materials & Design, 2022, 224, 111388.
67 Cao Z H, Zhai G Y, Ma Y J, et al. International Journal of Plasticity, 2021, 145, 103081.
68 Wang Y M, Wang K, Pan D, et al. Scripta Materialia, 2003, 48(12), 1581.
69 Nieh T C, Barbee T W, Wadsworth J. Scripta Materialia, 1999, 41(9), 929.
70 Cheng B, Trelewicz J R. Acta Materialia, 2018, 153, 314.
71 Zhang J Y, Liu G, Lei S Y, et al. Acta Materialia, 2012, 60(20), 7183.
72 Liu M C, Huang J C, Chou H S, et al. Scripta Materialia, 2009, 61(8), 840.
73 Liu M C, Lee C J, Lai Y H, et al. Thin Solid Films, 2010, 518(24), 7295.
74 Wang Y Q, Kiener D, Liang X Q, et al. Journal of Alloys and Compounds, 2018, 768, 88.
75 Şopu D, Albe K, Eckert J. Acta Materialia, 2018, 159, 344.
76 Chen Z, Ma Z, Yu K Y, et al. Surface and Coatings Technology, 2018, 353, 247.
77 Sharma P, Yubuta K, Kimura H, et al. Physical Review B, 2009, 80, 024106.
78 Kuan S Y, Chou H S, Liu M C, et al. Intermetallics, 2010, 18(12), 2453.
79 Zhou X L, Chen C Q. International Journal of Plasticity, 2016, 80, 75.
[1] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[2] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[3] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[4] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[5] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[6] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[7] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[8] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[9] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[10] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[11] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[12] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[13] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[14] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[15] 赵新涛, 姜宁, 王明道, 李骏腾, 李迪, 谭洪生. 纤维增强热塑性复合材料拉挤成型工艺研究进展[J]. 材料导报, 2024, 38(1): 22050237-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed