Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22110148-9    https://doi.org/10.11896/cldb.22110148
  高分子与聚合物基复合材料 |
孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化
杨张韬1, 倪爱清2, 王继辉1,*, 冯雨薇1
1 武汉理工大学材料科学与工程学院,武汉 430070
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Optimization and Simulation of Vacuum Assisted Resin Infusion Process for Perforated and Grooved Foam Sandwich Composite
YANG Zhangtao1, NI Aiqing2, WANG Jihui1,*, FENG Yuwei1
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 32132KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作提出了孔槽泡沫夹芯复合材料的设计方案并针对真空辅助树脂传递(VARI)工艺进行了实验和仿真研究。首先,通过实验测得玻璃纤维织物和树脂的相关参数,利用Hagen-Poiseuill方程和达西定律算出孔洞和沟槽的等效渗透率;接着,利用PAM-RTM模拟孔槽泡沫夹芯复合材料的VARI工艺过程,并与实验结果进行对比;然后,使用PAM-RTM研究了芯材加工参数、树脂灌注方式和导流网铺敷区域对成型过程的影响,并选出了最优方案;最后,在此方案的基础上研究了树脂黏度与灌注时间的关系,并拟合得到了预测函数。结果表明:实验结果与仿真结果基本一致;最优灌注方案可显著缩短树脂填充时间并降低整体孔隙率;预测函数可准确预测灌注时间,对实际生产具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨张韬
倪爱清
王继辉
冯雨薇
关键词:  夹芯复合材料  等效渗透率  真空辅助树脂传递  芯材加工  工艺优化  孔隙率    
Abstract: The design of perforated and grooved foam sandwich composites was proposed here and the processing technique of vacuum assisted resin infusion (VARI) used was investigated experimentally and numerically. Firstly, the related parameters of glass fiber fabric and resin were measured experimentally. The Hagen-Poiseuill equation and Darcy’s law were used to calculate the equivalent permeabilities of the holes and grooves. Then, the VARI processing of perforated and grooved foam sandwich composites was simulated by PAM-RTM and compared with experimental results. Afterwards, PAM-RTM was applied to study the influence of the parameter of core processing, the perfusion scheme of resin and the location of distribution medium on the molding process, and the optimal scheme was obtained. Finally, by investigating this scheme, the relationship between resin viscosity and perfusion time was studied, and the prediction function was obtained by fitting. The results show that good agreement was achieved between the experiment and simulation. The optimal perfusion scheme can significantly shorten the filling time of resin and reduce the overall porosity. The perfusion time can be accurately predicted by prediction function, which serves as significant guidance for practical production.
Key words:  sandwich composite    equivalent permeability    vacuum assisted resin infusion    core processing    process optimization    porosity
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TB332  
通讯作者:  *王继辉,武汉理工大学材料科学与工程学院教授、博士研究生导师。1982年武汉工业大学(现武汉理工大学)复合材料专业本科毕业,1987年武汉工业大学(现武汉理工大学)固体力学专业硕士毕业后到武汉工业大学(现武汉理工大学)工作至今,2000年武汉工业大学(现武汉理工大学)材料学专业博士毕业。目前主要从事高性能低成本复合材料技术,材料设计与计算机模拟,复合材料力学、结构和产品设计等方面的研究工作。已在国内外有影响力的学术刊物上发表论文40余篇,获中国科学院自然科学三等奖一项,获湖北省自然科学优秀论文一等奖和全国计算力学大会青年优秀论文奖和中国硅酸盐学会优秀论文奖各一项。jhwang@whut.edu.cn   
作者简介:  杨张韬,2020年6月于西安理工大学获得工学学士学位。现为武汉理工大学材料科学与工程学院硕士研究生,在倪爱清副研究员的指导下进行研究。目前主要研究领域为夹芯复合材料成型工艺仿真。
引用本文:    
杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
YANG Zhangtao, NI Aiqing, WANG Jihui, FENG Yuwei. Optimization and Simulation of Vacuum Assisted Resin Infusion Process for Perforated and Grooved Foam Sandwich Composite. Materials Reports, 2024, 38(2): 22110148-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110148  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22110148
1 Luo Z, Zhu X, Mei Z Y, et al. Journal of Vibration and Shock, 2008, 27(11), 134 (in Chinese).
罗忠, 朱锡, 梅志远, 等. 振动与冲击, 2008, 27(11), 134.
2 Zhu Z X, Zhu X, Li Y Q, et al. Ship Science and Technology, 2018, 40(3), 1 (in Chinese).
朱子旭, 朱锡, 李永清, 等. 舰船科学技术, 2018, 40(3), 1.
3 Vijaya R B, Alagarraja K, Elanchezhian C. Materials Today:Procee-dings, 2019, 16(2), 859.
4 Zhu D, Shi H, Fang H, et al. Composites Part B:Engineering, 2018, 150, 196.
5 Ouezgan A, Mallil E H, Echaabi J. Journal of Composite Materials, 2022, 56(21), 3221.
6 Jia Y M, Han Q M, Li Q, et al. Aeronautical Manufacturing Technology, 2009(S1), 8 (in Chinese).
贾欲明, 韩全民, 李巧, 等. 航空制造技术, 2009(S1), 8.
7 Yan C, Li Y, Su X, et al. Materials (Basel, Switzerland), 2022, 15(15), 5279.
8 Sun Y, Liu Q, Huang F, et al. Fiber Reinforced Plastics/Composites, 2017(9), 89 (in Chinese).
孙煜, 刘强, 黄峰, 等. 玻璃钢/复合材料, 2017(9), 89.
9 Malheiro J M, Nunes J P. Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences, Gaspar C A, Periaux J, ed. Springer International Publishing, Germany, 2020, pp. 319.
10 Yan C, Wu H, Ren X, et al. Fibers and Polymers, 2021, 22(9), 2612.
11 Poodts E, Minak G, Dolcini E, et al. Composites Part B:Engineering, 2013, 53, 179.
12 Jin S Q, Li W X, Liu H X. Acta Materiae Compositae Sinica, 2018, 35(12), 3342 (in Chinese).
金世奇, 李文晓, 刘昊鑫. 复合材料学报, 2018, 35(12), 3342.
13 Zhao C H, Zhang G C, Wu Y B. Materials, 2012, 5(7), 1285.
14 Jiang M C, Zhao L, Liu Q, et al. Acta Materiae Compositae Sinica, 2013, 30(S1), 266 (in Chinese).
姜茂川, 赵龙, 刘强, 等. 复合材料学报, 2013, 30(S1), 266.
15 Jhan Y, Lee Y, Chung C. Journal of Reinforced Plastics & Composites, 2011, 30(6), 533.
16 Jhan Y, Lee Y, Chung C. Journal of Composite Materials, 2011, 46(12), 1417.
17 Wang K, Lai J M, Yan D D, et al. Polymer Materials Science and Engineering, 2015, 31(11), 124 (in Chinese).
王科, 赖家美, 鄢冬冬, 等. 高分子材料科学与工程, 2015, 31(11), 124.
18 Halimi F, Golzar M, Asadi P, et al. Journal of Composite Materials, 2012, 47(15), 1853.
19 Jin Q H, Dang L, Yuan C X, et al. Fiber Reinforced Plastics/Compo-sites, 2019(7), 65 (in Chinese).
堇青海, 党磊, 原崇新, 等. 玻璃钢/复合材料, 2019(7), 65.
20 Li X L, Wang J H, Ni A Q, et al. Acta Materiae Compositae Sinica, 2019, 36(6), 1428 (in Chinese).
李香林, 王继辉, 倪爱清, 等. 复合材料学报, 2019, 36(6), 1428.
21 Zhang H, Li S X, Wang J H, et al. Acta Materiae Compositae Sinica, 2020, 37(5), 1175 (in Chinese).
张浩, 李书欣, 王继辉, 等. 复合材料学报, 2020, 37(5), 1175.
22 Xu G P, Han J. Journal of Textile Research, 2007(9), 61 (in Chinese).
徐国平, 韩建. 纺织学报, 2007(9), 61.
23 Liu J L, Wu X Q. Fiber Reinforced Plastics/Composites, 2008(6), 41 (in Chinese).
刘金良, 吴晓青. 玻璃钢/复合材料, 2008(6), 41.
24 Zhan M F, Wang J H, Ni A Q, et al. Acta Materiae Compositae Sinica, 2021, 38(12), 4180.
詹明樊, 王继辉, 倪爱清, 等. 复合材料学报, 2021, 38(12), 4180.
25 Kandlikar S G, Schmitt D, Carrano A L, et al. Physics of Fluids, 2005, 17(10), 100606.
26 Lei B, Zhou C X, Yu W, et al. CIESC Journal, 2012, 63(3), 775 (in Chinese).
雷波, 周持兴, 俞炜, 等. 化工学报, 2012, 63(3), 775.
27 Mohan R V, Shires D R, Tamma K K, et al. Polymer Composites, 1998, 19(5), 527.
28 Ma Y X, Wang J H, Ni A Q, et al. Acta Materiae Compositae Sinica, 2021, 38(10), 3302 (in Chinese).
马彦旭, 王继辉, 倪爱清, 等. 复合材料学报, 2021, 38(10), 3302.
29 Matsuzaki R, Kobayashi S, Todoroki A, et al. Composites Part A:Applied Science and Manufacturing, 2013, 45, 79.
30 Al-Zain A O, Alboloshi E A, Amir W A, et al. The Saudi Dental Journal, 2022, 34(3), 243.
31 Chung H P, Woo L. Journal of Reinforced Plastics and Composites, 2011, 30(11), 957.
[1] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[2] 王浩臻, 周新远, 刘明, 贾磊, 黄艳斐, 王海斗. 封孔剂降低热喷涂涂层孔隙率的研究进展[J]. 材料导报, 2023, 37(20): 22030068-19.
[3] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[4] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[5] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[6] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[7] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[8] 林志玮, 赵兴科, 赵增磊, 王世泽. 脉冲激光热爆箔法制备金属粉末试验及工艺优化[J]. 材料导报, 2022, 36(Z1): 21080257-6.
[9] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[10] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[11] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[12] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[13] 代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
[14] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[15] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed