Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23060136-7    https://doi.org/10.11896/cldb.23060136
  金属与金属基复合材料 |
基于响应面法的镍基高温合金GH4169电弧增材工艺优化
郭志永, 李猛, 张志强*, 路学成, 张天刚, 曹轶然
中国民航大学航空工程学院,天津 300300
Optimization of Arc Additive Process for Nickel-based Superalloy GH4169 Based on Response Surface Methodology
GUO Zhiyong, LI Meng, ZHANG Zhiqiang*, LU Xuecheng, ZHANG Tiangang, CAO Yiran
School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 11268KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以CMT-P复合电弧增材制造镍基合金GH4169为研究对象,综合考虑送丝速度、焊接速度和脉冲数量等工艺参数,以变形量和成形精度等成形质量为评价指标,采用中心复合响应面法进行工艺参数优化。建立变形量与成形精度的回归模型,分析工艺参数对成形质量的单体与交互效应。研究表明:对变形量影响最显著的因素是送丝速度,脉冲数量次之,焊接速度的影响最小。脉冲数量对成形精度的影响明显大于送丝速度和焊接速度,并且送丝速度和脉冲数量对其具有显著的交互作用;基于综合优化目标,获得了最优参数组合:送丝速度3.5 m/min、焊接速度5.8 mm/s、脉冲数量30;对比成形质量的模型预测与试验结果,变形量与成形精度的误差分别为10.3%和4%,验证了所建立成形质量模型的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭志永
李猛
张志强
路学成
张天刚
曹轶然
关键词:  电弧增材制造  CMT-P  GH4169  响应面法  工艺优化    
Abstract: In this work, the CMT-P composite arc additive manufacturing nickel base alloy GH4169 was studied. The process parameters such as wire feeding speed, welding speed and pulse number were considered comprehensively, and the forming quality such as distortion and forming accuracy was taken as the evaluation index. The process parameters were optimized by using the central composite response surface method. The regression model of distortion and forming accuracy was established, and the monomer and interaction effects of process parameters on forming quality were analyzed. The results show that the most significant factor affecting the amount of distortion is the wire feed speed, followed by the number of pulses, and the welding speed has the least influence. The influence of pulse number on forming accuracy is obviously greater than that of wire feeding speed and welding speed, and the interaction between wire feeding speed and pulse number is significant. Based on the comprehensive optimization objective, the optimal parameter combination is obtained: wire feed speed 3.5 m/min, welding speed 5.8 mm/s, pulse number 30. The relative errors of distortion amount and forming precision are 10.3% and 4%, respectively, which shows that the model is correct.
Key words:  arc additive manufacturing    CMT-P    GH4169    response surface method    process optimization
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TG444  
  V252.2  
基金资助: 天津市自然科学基金(22JCYBJC01280);中央高校基本科研业务费自然科学重点项目(3122023039);国家自然科学基金(51905536);航空科学基金(2020Z049067002)
通讯作者:  *张志强,通信作者,中国民航大学航空工程学院副教授、硕士研究生导师。2012年河北工业大学材料加工工程专业硕士毕业,2018年天津大学材料加工工程专业博士毕业后到中国民航大学工作至今。目前主要从事高性能焊接、增材制造、表面技术等方面的研究工作。发表论文 50 余篇,包括 Corrosion Science、Applied Surface Science、Materials & Design、Tribology International、Surface & Coatings Technology、Journal of Manufacturing Processes等。zqzhang@cauc.edu.cn   
作者简介:  郭志永,中国民航大学航空工程学院讲师、硕士研究生导师。2012年9月于河北工业大学获得工学学士学位,2014年9月、2018年1月分别于天津大学获得硕士学位和博士学位。目前主要从事精密加工技术与装备、增材制造等方面的研究工作。发表论文 20 余篇,包括 Mechanical Systems and Signal Processing、Applied Surface Science、International Journal of Mechanical Sciences、Journal of Manufacturing Processes等。
引用本文:    
郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
GUO Zhiyong, LI Meng, ZHANG Zhiqiang, LU Xuecheng, ZHANG Tiangang, CAO Yiran. Optimization of Arc Additive Process for Nickel-based Superalloy GH4169 Based on Response Surface Methodology. Materials Reports, 2024, 38(19): 23060136-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060136  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23060136
1 Hosseini E, Popovich V A. Additive Manufacturing, 2019, 30, 100877.
2 Smith T M, Gabb T P, Kantzos C A, et al. Journal of Alloys and Compounds, 2021, 873, 159789.
3 Tian Y, Mcallister D, Colijn H, et al. Metallurgical and Materials Transactions A, 2014, 45A, 4470.
4 Sun N. Research on microstructure and properties of nickel-based alloys by ultrasonic-assisted CMT additive manufacturing. Master's Thesis, Shandong University, China, 2021 (in Chinese).
孙宁. 超声辅助CMT增材制造镍基合金组织与性能研究. 硕士学位论文, 山东大学, 2021.
5 Zhao W Y, Wei Y H, Zhang X J, et al. International Journal of Advanced Manufacturing Technology, 2022, 119, 2571.
6 Zhang Z Q, Bai Y J, Xu L Y, et al. Transactions of Materials and Heat Treatment, 2022, 43(11), 10 (in Chinese).
张志强, 白玉洁, 徐连勇, 等. 材料热处理学报, 2022, 43(11), 10.
7 Srinivasan D, Sevvel P, Solomon J, et al. Materials Today: Proceedings, 2022, 64, 108.
8 Alonso U, Veiga F, Suarez A, et al. Journal of Materials Research and Technology, 2021.
9 Shi Y, Zhu Z W, Zhang G, et al. Materials Reports, 2022, 36(12), 36 (in Chinese).
石玗, 朱珍文, 张刚, 等. 材料导报, 2022, 36(12), 36.
10 Wang Z, Fu B G, Wang Y F, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(11), 13 (in Chinese).
王哲, 付彬国, 王玉凤, 等. 中国有色金属学报, 2021, 31(11), 13.
11 Kumar V, Sahu D R, Mandal A. Materials Today: Proceedings, 2022, 62, 255.
12 Kumar P, Singh R K R, Sharma S K. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(7), 1668.
13 Gomez-Ortega A, Corona-Galvan L, Deschaux-Beaume F, et al. Science and Technology of Welding and Joining, 2018, 23(4), 316.
14 Hu Z Q, Qin X P, Li Y F, et al. Journal of Mechanical Science and Technology, 2020, 34(4), 1683.
15 Kumar N, Devarajan P K, Vendan S, et al, The International Journal of Advanced Manufacturing Technology, 2017, 93(1-4), 385392.
16 Dongari S, Davidson M J. Metallurgical and Materials Engineering, 2021, 27, 2.
17 Mao N, Yan Z, Hu Z Q, et al. International Journal of Mechanical Sciences, 2023, 252, 108366.
18 Huang J X, Ren X H, Yu Z T, et al. Transactions of Materials and Heat Treatment, 2023, 44(3), 205(in Chinese).
黄佳欣, 任香会, 于振涛, 等. 材料热处理学报, 2023, 44(3), 205.
19 Lee H J, Ji C W, Yu J Y. Journal of Mechanical Science and Technology, 2018, 32(9), 4335
20 Sun Y, Hao M. Optics and Lasers in Engineering, 2012, 50(7), 985.
21 Kiaee N, Aghaie-Khafri M. Materials & Design, 2014, 54, 25.
22 Alam M K, Urbenic R J, Nazemi N, et al. The International Journal of Advanced Manufacturing Technology, 2018, 94, 397.
23 Xu M, Liu S Y, Li Y Q, et al. Applied Laser, 2017, 37(3), 5 (in Chinese).
徐茂, 刘双宇, 李彦清, 等. 应用激光, 2017, 37(3), 5.
24 Jia Z H, Wan X H, Guo D L, et al. Transactions of the China Welding Institution, 2020, 41(6), 90(in Chinese).
贾志宏, 万晓慧, 郭德伦, 等. 焊接学报, 2020, 41(6), 90.
25 Jin W, Zhang C, Jin S, et al. Applied Sciences, 2020(10), 1563.
26 Lu T, Yang G, Sun F, et al. Tool Engineering, 2022 (9), 56 (in Chinese).
路坦, 杨光, 孙凤, 等. 工具技术, 2022 (9), 56.
[1] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[4] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[5] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[6] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[7] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[8] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[9] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[10] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[11] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[12] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[13] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[14] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[15] 黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed