Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22060214-8    https://doi.org/10.11896/cldb.22060214
  金属与金属基复合材料 |
2319铝合金电弧增材制造温度场与应力演变研究
耿汝伟1,*, 程延海1, 杜军2, 魏正英2
1 中国矿业大学机电工程学院,江苏 徐州 221116
2 西安交通大学机械制造系统工程国家重点实验室,西安 710049
Research on Temperature Field and Stress Evolution of 2319 Aluminum Alloy in Wire and Arc Additive Manufacturing
GENG Ruwei1,*, CHENG Yanhai1, DU Jun2, WEI Zhengying2
1 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
2 State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 8008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 构建2319铝合金电弧增材制造热-弹-塑性有限元模型(FEM),计算成形过程瞬态温度场和熔合线附近温度梯度,分析工艺参数对熔池温度场的影响。研究不同工艺参数下熔池温度场分布规律,结果表明,温度梯度随电流的增加和基板移动速度的减小而增加。在温度场计算的基础上,利用热-弹-塑性有限元模型研究电弧增材过程残余应力的演化和分布规律。单道沉积情况下基板上纵向应力为压应力,沉积层内为拉应力,且纵向应力在数值上与等效应力接近,最大应力出现在沉积层中间部分。研究工艺参数对沉积层应力的影响规律,结果表明,提高基板移动速度可以降低沉积层内部的等效应力和纵向应力,而增大电流则会使沉积层内的等效应力和纵向应力增大。结合温度场结果可知,熔池内温度梯度与残余应力的大小呈正相关关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿汝伟
程延海
杜军
魏正英
关键词:  电弧增材制造  热-弹-塑性模型  残余应力  铝合金    
Abstract: Athermal elastic plastic finite element method (FEM) for the wire and arc additive manufacturing (WAAM) of 2319 aluminum alloy was established. The instantaneous temperature field and the temperature gradient near fusion line were calculated, and the effects of processing parameters on the temperature field of melting pool were analyzed. The distribution rules of temperature field under different processing parameters were investigated, it was found that the increase in current and the decrease in substrate movement speed would cause the temperature gradient to increase. On the basis of temperature field calculation, the evolution and distribution rules of residual stress in WAAM were investigated by thermal elastic plastic finite element method. In the case of single-layer deposition, the longitudinal stress in the substrate was compressive stress, the inside of the deposited layer suffered tensile stress. The longitudinal stress was close to the von Mises stress in value; the maximum stress was in the middle part of the deposited layer. The stress distributions of the deposition layer under different processing parameters were investigated, and it was found that increasing the substrate moving speed could reduce the von Mises stress and longitudinal stress inside the deposition layer, while the current would increase the von Mises stress and longitudinal stress. Combined with the temperature field results, it could be found that the residual stress was positively associated with the temperature gradient in the molten pool.
Key words:  WAAM    thermal elastic plastic model    residual stress    aluminum alloy
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TH164  
基金资助: 国家自然科学基金青年基金(52205432);江苏省自然科学基金-青年项目(BK20221118); 山东省自然科学基金(ZR2023QE232);博士后面上项目(2022M723375)
通讯作者:  * 耿汝伟,中国矿业大学机电工程学院讲师、硕士研究生导师。2014年中国石油大学(华东)机械设计制造及其自动化专业本科毕业,2021年西安交通大学机械工程专业博士毕业后到中国矿业大学工作至今。目前主要从事金属增材制造工艺、组织、性能等方面的研究工作。发表论文10余篇,包括Additive Manufacturing、Journal of Manufacturing Process等。geng6294@cumt.edu.cn   
引用本文:    
耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
GENG Ruwei, CHENG Yanhai, DU Jun, WEI Zhengying. Research on Temperature Field and Stress Evolution of 2319 Aluminum Alloy in Wire and Arc Additive Manufacturing. Materials Reports, 2023, 37(23): 22060214-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060214  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22060214
1 Yang G, Peng H J, Li C F, et al. Chinese Journal of Rare Metals, 2020, 44(3),249(in Chinese).
杨光, 彭晖杰, 李长富,等.稀有金属, 2020, 44(3), 249.
2 Williams S W, Martina F, Addison A C, et al. Materials Science and Technology, 2016, 32(7),641.
3 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2018, 35,127.
4 Bajaj P, Hariharan A, Kini A,et al. Material Science Engineering A, 2020, 722(1),1.
5 Huang D, Zhu Z, Geng H, et al. Journal of Materials Engineering, 2017, 45(3),66(in Chinese).
黄丹, 朱志华,耿海滨, 等.材料工程, 2017, 45(3),66.
6 Wang H. Acta Aeronautica et Astronautica Sinica, 2014, 35(10),2690(in Chinese).
王华明.航空学报, 2014, 35(10),2690.
7 Wang Z, Denlinger E, Michaleris P, et al. Materials & Design,2017,113,169.
8 Li S, Ren S, Zhang Y, et al. Journal of Materials Processing Technology,2017,244,240.
9 Murakawa H, Deng D, Ma N, et al. Computational Materials Science, 2012,51(1),43.
10 Ni C, Zhang C, Liu T, et al. Chinese Journal of laser, 2018, 45(7),0702004(in Chinese).
倪辰旖, 张长东, 刘婷婷, 等. 光学学报,2018, 45(7),0702004.
11 Zhang Y. Numerical simulation analysis of temperature field and stress field in arc additive manufacturing Ph.D. Thesis, Dalian University of Technology, China, 2020(in Chinese).
张玉玲. 电弧增材制造温度场及应力场的数值模拟分析. 博士学位论文, 大连理工大学, 2020.
12 Wu Q, Mukherjee T, Liu C, et al. Additive Manufacturing, 2019, 29,100808.
13 Sun J, Hensel J, Khler M, et al. Journal of Manufacturing Processes, 2021, 65(5),97
14 Wang X, Wang A. In: 2016 European Modelling Symposium (EMS). Pisa, Italy,2016.
15 Zhang C, Wang X, Chang M, et al. Journal of Mechanical Engineering, 2021, 57(10),160(in Chinese).
张超华, 王晓霞, 常茂椿,等.机械工程学报, 2021, 57(10),160.
16 Feng Z, Ma N, Li W, et al. International Journal of Advanced Manufacturing Technology, 2020, 111(7-8),1.
17 Lee C, Chang K. Computational Materials Science, 2009, 46(4),1014.
18 Deng D. Materials & Design, 2009, 30(2),359.
19 Michaleris P. Finite Elements in Analysis & Design,2014,86(9),51.
20 Goldak J, Chakravarti A, Bibby M. Metallurgical Transactions B,1984,15(2),299.
21 Salerno G, Bennett C, Sun W, et al. International Journal of Mechanical Sciences, 2018, 144(8),654.
22 Liang W, Zheng Y, Deng D. Journal of Mechanical Engineering, 2021, 57(6),70(in Chinese).
梁伟, 郑颖, 邓德安.机械工程学报, 2021, 57(6),70.
23 Gou G, Huang N, Chen H, et al. Journal of Southwest Jiaotong University, 2012, 47(4),618(in Chinese).
苟国庆, 黄楠, 陈辉,等.西南交通大学学报, 2012, 47(4),618.
24 Zheng B, Song Y, Xi F, et al. Journal of Mechanical Engineering, 2009, 45(3),275(in Chinese).
郑卜祥,宋永伦,席峰, 等.机械工程学报,2009,45(3),275
25 Huang C,Li H,Luo C,et al. Transactions of the China Welding Institution, 2017, 38(7),54(in Chinese).
黄超群, 李桓, 罗传光, 等.焊接学报, 2017, 38(7), 54.
26 Geng R, Du J, Wei Z, et al. Journal of Materials Engineering and Performance, 2019, 28(10),6544.
27 Mercelis P, Kruth J P. Rapid Prototyping Journal, 2006, 12(5),254.
28 Zhao G, Du J, Wei Z, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019,41(1),60.
29 Bai X, Paul C, Ding J, et al. International Journal of Heat and Mass Transfer, 2018, 124(9),504.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 沈士泰, 陈雨晨, 卫国英, 朱本峰. CeO2/铝合金自修复阳极氧化复合膜的电化学制备及表面性能[J]. 材料导报, 2023, 37(S1): 23030301-5.
[3] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[4] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[5] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[6] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[7] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[8] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[9] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[10] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[11] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[12] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[13] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[14] 黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
[15] 黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed