Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 20090331-7    https://doi.org/10.11896/cldb.20090331
  金属与金属基复合材料 |
焊接残余应力调控技术的研究与应用进展
郭政伟1, 龙伟民2,*, 王博2, 祁婷1, 李宁波2
1 上海航天设备制造总厂有限公司,上海 200245
2 中机智能装备创新研究院(宁波)有限公司,浙江 宁波 315700
Progresses on Research and Application of Welding Residual Stress Regulation Technologies
GUO Zhengwei1, LONG Weimin2,*, WANG Bo2, QI Ting1, LI Ningbo2
1 Shanghai Aerospace Equipments Manufacture Co.,Ltd.,Shanghai 200245,China
2 China Innovation Academy of Intelligent Equipment Co., Ltd., Ningbo 315700, Zhejiang, China
下载:  全 文 ( PDF ) ( 3645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 残余应力在焊接构件中普遍存在,不均衡分布的残余应力是构件变形和开裂的根源,直接影响焊接构件的承载能力、稳定性和服役寿命。焊接残余应力随构件服役环境及外界载荷变化而动态分布,对残余应力的消减、均化应贯穿焊接构件设计、生产和服役全生命周期。焊接变形及残余应力控制关键在于塑性区的调控,合理的焊接顺序能有效降低工件应力集中并改善其分布状态,及时的焊前预热及焊后回火能有效降低接头温度梯度、松弛应力集中、消减残余应力。对焊缝的锤击松弛处理能抵消部分焊缝区收缩,减小残余拉应力。对焊缝及周边区域施加拉伸、振动时效、超声冲击和喷丸强化等力学形变载荷,可与焊件内部应力叠加促进塑性形变,释放、均衡残余应力。这些方法各有优势,但均需密切结合构件材料、结构及性能控制要求来进行选择。随着制造业转型发展及绿色环保政策驱动,未来工程装备残余应力调控技术会向绿色环保、柔性高效、过程可控、专业化方向转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭政伟
龙伟民
王博
祁婷
李宁波
关键词:  焊接残余应力  焊接顺序  热时效  超声冲击  脉冲磁场    
Abstract: Residual stress is widespread in welded components. Uneven distribution of the residual stress is the source of deformation and cracking of structural parts, which directly affect the bearing capacity, stability andservice life of welded components. The residual stress of welding is distributed dynamically with the change of service environment and external load. The reduction and homogenization of residual stress should be carried through the entire life cycle of welding component design, production and service. The key to controlling deformation and residual stress in welding lies on the regulation of the plastic zone. A well-performed welding sequence can effectively reduce the residual stress after welding and improve its distribution. Proper preheating before welding and tempering after welding can effectively reduce temperature gradient, relax stress concentration, and reduce residual stress at the joint. The hammering treatment of the welded joint can extend the metal to offset part of the shrinkage in the welding area, which reduces the residual tensile stress. In the mechanical deformation method, load is applied on the weld and the surrounding area, and then the external load and the internal residual stress are superimposed to make the component undergo plastic deformation. The plastic deformation allows the residual stress to be released and balanced. The common mechanical deformation methods include tensile strength, vibration aging, explosion treatment, ultrasonic impact and shot peening strengthening. Each mechanical deformation method has its own advantage, thus, they should be carefully selected considering the component materials, structure, and performance control requirements. Driven by the transitional development of manufacturing industry and the environmental protection policies, the residual stress regulation technology is expected to be greener, more flexible and efficient, more controllable and specialized in the future.
Key words:  welding residual stress    welding sequence    thermal aging    ultrasonic shock    pulsed magnetic field
发布日期:  2023-02-08
ZTFLH:  TG44  
基金资助: 河南省重大关键技术需求揭榜攻关项目(191110111000);宁波市“3315”人才计划2020年创新团队C类
通讯作者:  *龙伟民,研究员,博士研究生导师,绿色焊接国家重点领域创新团队带头人,万人计划入选者、中原学者、国务院特殊津贴专家、全国创新争先奖获得者。长期从事绿色焊接技术及数字化制造装备的研发、教学及产业化工作。在国内外学术期刊上发表论文320余篇,出版专著18部,授权专利86项。   
作者简介:  郭政伟,2016年4月毕业于西北工业大学,获得工学硕士学位。现就职于上海航天设备制造总厂有限公司,研发工程师。目前主要研究领域为焊接工艺及自动化装备研发。
引用本文:    
郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
GUO Zhengwei, LONG Weimin, WANG Bo, QI Ting, LI Ningbo. Progresses on Research and Application of Welding Residual Stress Regulation Technologies. Materials Reports, 2023, 37(2): 20090331-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090331  或          http://www.mater-rep.com/CN/Y2023/V37/I2/20090331
1 Xu C G, Li P L. Journal of Mechanical Engineering, 2020, 56(8), 113(in Chinese).
徐春广, 李培禄. 机械工程学报, 2020, 56(8), 113.
2 Jiang J T, Meng J K, Dong Y B, et al. Journal of Astronautics, 2020, 41(6), 676(in Chinese).
姜建堂, 孟金奎, 董亚波, 等. 宇航学报, 2020, 41(6), 676.
3 Fu Q, Luo Y, Liu Z D, et al. Electric Welding Machine, 2019, 49(9), 49(in Chinese).
付强, 罗英, 刘兆东, 等. 电焊机, 2019, 49(9), 49.
4 Coules H E. Material Science and Technology, 2013, 29(1), 4.
5 Luis D C, Harry E C, Paul A, et al. Journal of Materials Processing Technology, 2017, 247, 243.
6 Gadallah R, Tsutsumi S, Hiraoka K, et al. Marine Structures, 2015, 44, 232.
7 Sun T M. Generation and elimination of welding residual stress, China Petrochemical Press, China, 2010(in Chinese).
宋天民. 焊接残余应力的产生与消除, 中国石化出版社, 2010.
8 Xu X X, Liang X G, Yang R S, et al. Transactions of the China Welding Institution, 2020, 41(10), 17(in Chinese).
许欣欣, 梁晓光, 杨瑞生, 等. 焊接学报, 2020, 41(10), 17.
9 James M N. Engineering Failure Analysis, 2011, 18(8), 1909.
10 Hensel J, Nitschke-Pagel T, Dilger K. Welding in the Word, 2016, 60(2), 26281.
11 Shahani A R, Shakeri I, Rans C D. International Journal of Fatigue, 2020, 139, 105780.
12 Sun P F, Yao D D, Zhang P L, et al. Materials Reports, 2021, 35(9), 9059(in Chinese).
孙朋飞, 姚丹丹, 张鹏林, 等. 材料导报, 2021, 35(9), 9059.
13 Sun W. Research on fatigue behavior of high strength steel under-matched cruciform welded joints. Ph. D. Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
宋威. 高强钢低匹配十字焊接接头疲劳行为研究. 博士学位论文, 哈尔滨工业大学, 2019.
14 Barsoum Z, Samuelsson J, Jonsson B, et al. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(10), 1736.
15 Li J F, Zhang D H. Transactions of the China Welding Institution, 2017, 38(1), 43(in Chinese).
李金凤, 张东焕. 焊接学报, 2017, 38(1), 43.
16 Guo J L, Dong Z B, Liu X S, et al. Journal of Mechanical Engineering, 2019, 56(6), 1(in Chinese).
郭军礼, 董志波, 刘雪松, 等. 机械工程学报, 2019, 55(6), 1.
17 Zheng Q, Lu S J, Li S, et al. Journal of Mechanical Engineering, 2019, 55(6), 46(in Chinese).
郑乔, 逯世杰, 李索, 等. 机械工程学报, 2019, 55(6), 46.
18 Khoshroyan A, Darvazi A R. Transactions of Nonferrous Metals Society of China, 2020, 30(1), 76.
19 Sun Y G. Welding technology and residual stresses analysis of tube-plate structure with multi-welds. Ph. D. Thesis, Harbin Engineering University, China, 2013(in Chinese).
宋以国. 多焊缝管板结构焊接工艺与残余应力分析. 博士学位论文, 哈尔滨工程大学, 2013.
20 Quan G Z, Shi R J, Liu Q, et al. Materials Reports B:Research Papers, 2020, 34(7), 14154(in Chinese).
权国政, 施瑞菊, 刘乔, 等. 材料导报:研究篇, 2020, 34(7), 14154.
21 Ahola A, Nykanen T, Bjork T. Fatigue and Fracture of Engineering and Structures, 2017, 40(5), 670.
22 Guan J J, Yang N, Zhong H Y, et al. Transactions of the China Welding Institution, 2020, 41(1), 91(in Chinese).
管建军, 杨男, 钟宏远, 等. 焊接学报, 2020, 41(1), 91.
23 Cao Z, Jiang R J, Du W Z, et al. Chniese Journal of Lasers, 2020, 47(9), 88(in Chinese).
曹政, 姜仁杰, 杜伟哲, 等. 中国激光, 2020, 47(9), 88.
24 Zhao Z, Li J L, Li M. Rare Metal Materials and Engineering, 2008, 37(3), 525(in Chinese).
赵征, 李京龙, 黎明. 稀有金属材料与工程, 2008, 37(3), 525.
25 Serizawa H, Nakamura S, Tanigawa H, et al. Journal of Nuclear Materials, 2013, 442(1), 535.
26 Vinay K Y, Vidit G, Singh I V. Materials Science and Engineering:A, 2020, 779, 139116.
27 Huang B S, Liu J Q, Zhang S S, et al. Journal of Materials Research and Technology, 2020, 9(3), 6186.
28 Lin J, Ma N, Liu X, et al. Journal of Materials Processing Technology, 2020, 278, 116504.
29 Lu S J, Wang H, Dai P Y, et al. Acta Metallurgica Sinica, 2019, 55(12), 1581(in Chinese).
逯世杰, 王虎, 戴培元, 等. 金属学报, 2019, 55(12), 1581.
30 Ma B, He J, Zhang Y. Journal of Plasticity Engineering, 2021, 28(2), 170(in Chinese).
马标, 何嘉, 张勇. 塑性工程学报, 2021, 28(2), 170.
31 Gyura L, Marcell G, Balogh A. Welding in the World, 2021, 65, 543.
32 Wang P, Liu Y, Chang H X, et al. Transactions of the China Welding Institution, 2019, 40(7), 6(in Chinese).
王平, 刘永, 常荷茜, 等. 焊接学报, 2019, 40(7), 6.
33 Ferreno D, Carral J P, Calderon R L, et al. Construction and Building Materials, 2017, 137, 535.
34 Liu W X. Analysis of residual stress generation mechanism of special welding parts and research on vibration aging. Master's Thesis, Beihua Institute of Aerospace Industry, China, 2019(in Chinese).
刘伟祥. 特种焊接件残余应力产生机理分析及振动时效研究. 硕士学位论文, 北化航天工业学院, 2019.
35 Duan N Q, Li X, Du W H, et al. Advanced Materials Research, 2013, 2262, 2343.
36 Wang D P, Hu D J, Deng C Y, et al. Transactions of the China Welding Institution, 2020, 41(4), 6(in Chinese).
王东坡, 胡典均, 邓彩艳, 等. 焊接学报, 2020, 41(4), 6.
37 Wang Z D, Sun G F, Lu Y, et al. Surface and Coatings Technology, 2020, 385(C), 125403.
38 Statnikov E S, Korolkov O V, Vityazev V N. Ultrasonics, 2006, 44, 533.
39 Ding Y R, Chen F R. Surface Technology, 2021, 50(4), 235(in Chinese).
丁亚茹, 陈芙蓉. 表面技术, 2021, 50(4), 235.
40 Hu Z Y, Yan J L, Liu C, et al. Chinese Journal of Applied Mechanics, 2021, 38(2), 730(in Chinese).
胡章咏, 晏嘉陵, 刘川, 等. 应用力学学报, 2021, 38(2), 730.
41 Jia C L, Chen F R. Materials Reports B:Research Papers, 2018, 32(8), 2816(in Chinese).
贾翠玲, 陈芙蓉. 材料导报:研究篇, 2018, 32(8), 2816.
42 Yang B, Tan C W, Zhao Y B, et al. Journal of Materials Research and Technology, 2020, 9(5), 9576.
43 Hu X D, Ma C B, Yang Y C, et al. International Journal of Steel Structures, 2020, 20, 1014.
44 Robinson J S, Redington W. Materials Characterization, 2015, 105, 47.
45 He Y Z, Wang D P, Wang Y, et al. Transactions of Nonferrous Metals Society of China, 2021, 26(6), 1531.
46 Huang X Q, Cai Z P. Journal of Mechanical Engineering, 2011, 47(4), 88(in Chinese).
黄欣泉, 蔡志鹏. 机械工程学报, 2011, 47(4), 88.
[1] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[2] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[3] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[4] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[5] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[6] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[7] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[8] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed