Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22142-22147    https://doi.org/10.11896/cldb.19100032
  金属与金属基复合材料 |
基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究
乔及森1,2, 芮正雷1,2, 王磊1,2, 陈振文1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Temperature and Residual Stress Field of Flux Bands Constraining Arc Welding T-joint by FEA Based on Hybrid Welding Heat Source Model and Experimental Investigation
QIAO Jisen1,2, RUI Zhenglei1,2, WANG Lei1,2, CHEN Zhenwen1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 6035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过将高斯面热源与柱型体热源耦合的方式构建了一种组合热源,并使用有限元技术对焊剂片约束电弧焊高强钢Ⅰ型三明治板T形接头焊接温度场及应力、变形场分布进行了计算,同时采用红外热成像跟踪和轮廓扫描技术获得了焊接过程温度与变形场的试验数据。通过对比计算结果与试验结果,发现二者所得焊缝形貌、焊接热循环分布与演化、焊后残余应力及残余变形分布吻合良好,从而验证了使用该组合热源模型对焊剂片约束电弧焊温度场及应力场有限元分析的有效性和可行性。同时发现,焊接过程中所产生的残余应力集中于焊缝及其附近区域,在数值上小于材料的屈服应力。并且焊接导致的变形较小,最大变形出现在面板边缘位置,说明使用焊剂片约束电弧焊对高强钢T形接头焊接时可有效控制残余变形,为大板焊接提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔及森
芮正雷
王磊
陈振文
关键词:  焊剂片约束电弧焊  T形接头  焊接温度场  焊接残余应力  焊接变形    
Abstract: Acombined welding heat source model coupled by a flat gaussian and a cylindrical volume heat source was developed to analysis the evolution of welding-induced temperature, residual stress and distortion distribution during the processing of the flux band constraining arc (FBCA) welded T-joint of the Ⅰ-core sandwich. The experiment statistics were obtained by the infrared thermal imager and the three-coordinate instrument. By comparing the results between the experiment and simulation, it is found that the weld cross section, thermal cycle curves, welding isothermal curves and welding distortion are basically consistence between experiment and simulation, which proves the validity and feasibility of the combined welding heat source model on the analysis of this method. At the same time, it is found that the residual stress generated during the welding process is concentrated on the weld and its vicinity, which is much lower than the yield stress of the material. And the residual deformation is acceptable, that the maximum distortion happened on the edge of the panels, according to the experimental measurements. This indicates that the FBCA can effectively control the residual deformation of high-strength steel T-joints, which improves the welding technology for the sandwich panels.
Key words:  flux band constraining arc welding    T-joint    welding temperature field    welding residual stress    welding distortion
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TG404  
基金资助: 国家自然科学基金(51665033);甘肃省科学技术厅中小企业创新基金(18CX6JA025)
通讯作者:  qiaojisen@lut.cn   
作者简介:  乔及森,兰州理工大学材料科学与工程学院教授,博士研究生导师。2007年12月毕业于兰州理工大学焊接工程系,材料加工工程博士学位。同年加入兰州理工大学材料科学与工程学院工作至今,主要从事移动装置焊接结构轻量化设计与制造基础研究,金属材料塑形大变形力学行为研究。在国际和国内学术期刊发表相关研究论文60余篇,申请国家发明专利7项。获甘肃省科技进步一等奖一项,甘肃省冶金有色工业二等奖一项。芮正雷,2017年9月至今就读于兰州理工大学材料科学与工程学院,硕士研究生。主要从事高强钢三明治板焊接制造工艺及结构力学性能研究。
引用本文:    
乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
QIAO Jisen, RUI Zhenglei, WANG Lei, CHEN Zhenwen. Temperature and Residual Stress Field of Flux Bands Constraining Arc Welding T-joint by FEA Based on Hybrid Welding Heat Source Model and Experimental Investigation. Materials Reports, 2020, 34(22): 22142-22147.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100032  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22142
1 Kujala P, Klanac A. Rodogradnja, 2005, 56(4), 305.2 Meng W, Li Z, Huang J, et al. International Journal of Advanced Manufacturing Technology, 2013, 69(5-8), 1105.3 Meng W, Li Z, Lu F, et al. Journal of Materials Processing Technology, 2014, 214(8), 1658.4 Jiang X X, Zhu L, Qiao J S, et al. Applied Mechanics and Materials, 2014, 551(10),42.5 Gong L, Zhu L, Zhang A H. et al.Transaction of the China Welding Institution,2017, 38(12), 57(in Chinese).龚练, 朱亮, 张爱华, 等. 焊接学报, 2017, 38(12), 57.6 Gang Z, Yu S, Ming Z, et al. Journal of Materials Processing Technology, 2017, 245, 15.7 Li Z H. Study onwelding process of high strength steel sandwich plate with restrained arc plug welding. Master's Thesis, Lanzhou University of Technology, China, 2018(in Chinese).李政濠. 高强钢三明治板约束电弧塞焊工艺基础研究. 硕士学位论文, 兰州理工大学, 2018.8 Chen Z W. Study on arc droplet transfer behavior of sandwich panels T-joints in flux band constricting arc welding. Master's Thesis, Lanzhou University of Technology, China, 2019(in Chinese).陈振文. 三明治板T形接头焊剂片约束电弧焊电弧及熔滴过渡行为研究. 硕士学位论文,兰州理工大学, 2019.9 Taljat B, Radhakrishnan B, Zacharia T. Materials Science and Enginee-ring A, 1998, 246(1-2), 45.10 Zhang Xiaohong, Chen Jingqing, Chen Hui. Transactions of the China Welding Institution, 2018, 39(1), 17(in Chinese).张晓鸿, 陈静青, 陈辉.焊接学报, 2018, 39(1), 17.11 Huang Y F, Luo Z, Wang Z M, et al. Transactions of the China Welding Institution, 2017, 38(11), 103(in Chinese).黄逸飞, 罗震, 王证茗, 等. 焊接学报, 2017, 38(11), 103.12 Hu B, Hu S, Shen J, et al. Computational Materials Science, 2015, 97, 48.13 Ji Qing, Xing Yanfeng, Xu Can. Hot Working Technology, 2017, 46(21), 196(in Chinese).冀晴, 邢彦锋, 徐屾. 热加工工艺, 2017, 46(21), 196.14 Zhu Decai. Experiment research on solid interface thermal contact conductance coefficient. Doctor's Thesis, Dalian University of Technology, China, 2007(in Chinese).朱德才. 固体界面接触换热系数的实验研究. 博士学位论文, 大连理工大学, 2007.
[1] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed