Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10138-10143    https://doi.org/10.11896/cldb.19030175
  金属与金属基复合材料 |
2219铝合金焊接接头软化模型的建立与应用
吴奇, 李晓延, 孙鲁阳, 王小鹏
北京工业大学材料科学与工程学院,北京 100124
Establishment and Application of Softening Model of 2219 Aluminum Alloy Welding Joint
WU Qi, LI Xiaoyan, SUN Luyang, WANG Xiaopeng
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4588KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过2219铝合金TIG焊接接头不同区域的微区拉伸试验以及母材在热循环过程中不同温度下的拉伸试验,获得了相应的屈服强度和抗拉强度,建立了基于温度、温度历史及应变强化效应的接头软化模型。将此软化模型应用到TIG焊接接头残余应力的有限元模拟中,并将应力模拟值与X射线衍射应力实测值进行对比。结果表明,与常规模型相比,软化模型中的残余应力分布水平出现了不同程度的降低,此外,残余应力在焊缝附近区域、起弧端与收弧端区域及横向分布上下降幅度较为明显。与实测值相比,应用接头软化模型计算得到的焊接残余应力分布与之更为接近,提高了残余应力的计算精度,验证了接头软化模型的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴奇
李晓延
孙鲁阳
王小鹏
关键词:  2219铝合金  软化模型  焊接残余应力  有限元模拟    
Abstract: The yield strength and tensile strength were obtained through the micro-area tensile test in different regions of 2219 aluminum alloy TIG wel-ding joint and the tensile test at different temperatures of the base material during the thermal cycle. The softening model based on temperature, temperature history and strain strengthening effect was established. The softening model was applied to the finite element simulation of the residual stress of TIG welding joint, and the stress of simulated values and measured values by X-ray diffraction were compared. It was found that, compared with the conventional model, the residual stress distribution based on the softening model decreased variously and the effect was more obvious in the area of both ends and near the weld and the transverse distribution. The distribution of welding residual stress with the softe-ning model is closer to the measured value, which improves the accuracy of welding residual stress calculation and verifies the effectiveness of the softening model.
Key words:  2219 aluminum alloy    softening model    welding residual stress    finite element simulation
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TG404  
通讯作者:  李晓延,北京工业大学,教授。1992年毕业于哈尔滨工业大学,材料学博士学位。1998年起任北京工业大学教授,2000年起任博士研究生导师。主要从事材料无损检测与评价、微电子组装材料与技术、材料工程信息技术等方面的研究工作。在国内外重要期刊发表论文100多篇。xyli@bjut.edu.cn   
作者简介:  吴奇,北京工业大学,硕士研究生。主要从事焊接残余应力测试与预测等方面的研究工作。
引用本文:    
吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
WU Qi, LI Xiaoyan, SUN Luyang, WANG Xiaopeng. Establishment and Application of Softening Model of 2219 Aluminum Alloy Welding Joint. Materials Reports, 2020, 34(10): 10138-10143.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030175  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10138
1 Lumley R N, Polmear I J, Morton A J, et al. Materials & Design, 2014, 56(4), 862.
2 Wang G Q, Zhao Y H, Hao Y F. Journal of Materials Science & Techno-logy, 2018, 34(1),73.
3 Lin Y T, Wang D B, Wang Y. Journal of Tianjin University (Natural Science and Engineering Technology),2015, 48(5),468(in Chinese).
林一桐, 王东坡, 王颖.天津大学学报(自然科学与工程技术版), 2015, 48(5), 468.
4 He H, Yi Y, Huang S, et al. Journal of Materials Science & Technology, 2019, 35(1),55.
5 Liu Z H, Shang Y R, Ning L Q, et al.Missiles and Space Vehicles, 2009(4),(in Chinese).
刘志华, 尚育如, 宁立芹,等. 导弹与航天运载技术, 2009(4),30.
6 Jia C L, Chen F R.Materials Review B: Research Papers, 2018, 32(8),2816(in Chinese).
贾翠玲, 陈芙蓉.材料导报:研究篇, 2018, 32(8),2816.
7 Zhang W, Jiang W, Zhao X, et al. International Journal of Fatigue, 2018, 109,182.
8 Zheng J, Ince A, Tang L. Procedia Engineering, 2018, 213,36.
9 Zhu X K, Chao Y J. Computers & Structures, 2002, 80(11),967.
10 Sonne M R, Tutum C C, Hattel J, et al. Journal of Materials Processing Technology, 2013, 213(3),477.
11 Zhang Z L, Shi Q Y, Liu Y, et al. Transactions of the China Welding Institution, 2009, 30(2),45(in Chinese).
张增磊, 史清宇, 刘园, 等. 焊接学报, 2009, 30(2),45.
12 Li Y J, Li Q, Wu A P, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(9),3072.
13 Hu M J, Li K J, Cai Z P, et al. Journal of Manufacturing Processes, 2018, 34,614.
14 Deng D A, Zhang Y B, Li S, et al.Acta Metallurgica Sinica , 2016, 52(4),394(in Chinese).
邓德安, 张彦斌, 李索, 等. 金属学报, 2016, 52(4),394.
15 Zhang Z L, Silvanus J, Li H K, et al. Science & Technology of Welding & Joining, 2013, 13(5),422.
16 Meng Q G, Fang H Y, Yang J G, et al. Theoretical & Applied Fracture Mechanics, 2005, 44(2),178.
17 Narender K, Rao A S M, Rao K G K, et al. Thermochimica Acta, 2013, 569(Complete),90.
18 Goldak J, Chakravarti A, Bibby M. Metallurgical and Materials Transactions B, 1984, 15(2),299.
19 Fang H Y. Welding structure, China Machine Press, China, 2008(in Chinese).
方洪渊. 焊接结构学,机械工业出版社, 2008.
[1] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[2] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[3] 黄建武, 易幼平, 黄始全, 郭万富. 深冷变形对2219铝合金环件晶粒组织及性能的影响[J]. 材料导报, 2020, 34(14): 14129-14133.
[4] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[5] 方杰, 易幼平, 黄始全, 何海林, 郭万富. 预拉伸变形对2219铝合金环形件组织与力学性能的影响[J]. 材料导报, 2019, 33(18): 3062-3066.
[6] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[7] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[8] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[9] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[10] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed