Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3062-3066    https://doi.org/10.11896/cldb.18070254
  金属与金属基复合材料 |
预拉伸变形对2219铝合金环形件组织与力学性能的影响
方杰1, 2, 易幼平1, 2, 3, , 黄始全2, 3, 何海林1, 2, 郭万富1, 2
1 中南大学轻合金研究院,长沙 410083
2 中南大学高性能复杂制造国家重点实验室,长沙 410083
3 中南大学机电工程学院,长沙 410083
Influence of Pre-tensile Deformation on the Microstructure and Mechanical Properties of 2219 Aluminum Alloy Forgings
FANG Jie1,2, YI Youping1,2,3, HUANG Shiquan2,3, HE Hailin1,2, GUO Wanfu1,2
1 Research Institute of Light Alloy, Central South University, Changsha 410083
2 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083
3 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 3043KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 预变形是提高时效硬化型铝合金力学性能的有效手段,其变形量是影响铝合金力学性能的重要因素。本工作通过硬度测试、扫描电镜(SEM)、透射电镜(TEM)观察以及室温拉伸性能试验,研究了不同预拉伸变形量(0%、1%、3%、5%、7%)对2219铝合金环锻件组织与力学性能的影响,以获得使合金材料力学性能最优的变形量。结果表明:预拉伸变形可以促进时效析出相θ'的析出,随着预拉伸变形量的增加,峰值时效时间缩短,硬度和强度先增加后减小,延伸率逐渐降低。当预拉伸变形量为3%时,2219铝合金环锻件综合力学性能最佳,其抗拉强度、屈服强度、延伸率分别为463.5 MPa、349.5 MPa和14.31%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方杰
易幼平
黄始全
何海林
郭万富
关键词:  2219铝合金  预拉伸变形  时效  形变热处理  力学性能    
Abstract: Pre-deformation is an effective method to improve the mechanical properties of aging hardened aluminum alloy and its deformation is an important factor to affect mechanical properties. The effects of different pre-tensile deformation amounts (0%, 1%, 3%, 5%, 7%) on the microstructure and mechanical properties of 2219 aluminum alloy ring forgings were investigated by hardness test, scanning electron microscopy (SEM), transmission electron microscopy (TEM) observation and the tensile test at room temperature, to obtain the deformation amount when the mechanical properties of alloy materials were optimized. The results show that pre-tensile deformation can promote the precipitation of aged precipitated phase θ'. With the increase of pre-tensile deformation, the peak aging time is shortened, the hardness and strength increase first and then decrease, and the elongation decreases gradually. When the pre-tensile deformation is 3%, the comprehensive mechanical properties of 2219 aluminum alloy ring forgings are the best, with its tensile strength, yield strength and elongation are 463.5 MPa, 349.5 MPa and 14.31%, respectively.
Key words:  2219 aluminum alloy    pre-tensile deformation    aging    thermo-mechanical treatment    mechanical property
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG146. 21  
基金资助: 中国航天联合基金项目(U1637601);高性能复杂制造国家重点实验室自由探索项目(zzyjkt2014-02)
通讯作者:  yyp@csu.edu.cn   
作者简介:  方杰,1991年生,中南大学轻合金研究院机械工程专业硕士研究生。主要从事铝合金加工及冷变形工艺研究。
易幼平,中南大学机电工程学院教授,博士研究生导师。2000年毕业于中南工业大学机电工程学院,机械专业博士学位。2004年加入中南大学机电工程学院工作,主要从事航空航天轻合金构件成形工艺,模具、热处理工艺与装备等方向的研究。发表论文64篇,SCI、EI检索39篇,授权国家发明专利4项,软件著作权2项。
引用本文:    
方杰, 易幼平, 黄始全, 何海林, 郭万富. 预拉伸变形对2219铝合金环形件组织与力学性能的影响[J]. 材料导报, 2019, 33(18): 3062-3066.
FANG Jie, YI Youping, HUANG Shiquan, HE Hailin, GUO Wanfu. Influence of Pre-tensile Deformation on the Microstructure and Mechanical Properties of 2219 Aluminum Alloy Forgings. Materials Reports, 2019, 33(18): 3062-3066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070254  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3062
[1] He H, Yi Y, Huang S, et al. Journal of Materials Science & Technology, 2019, 35(1), 55.
[2] Liu C F. Aeronautical Manufacturing Technology, 2003,46(2), 22(in Chinese).刘春飞.航空制造技术,2003,46(2),22.
[3] Yao M, Zhang W X, Fu M M, el al. Hot Working Technology, 2017(16),227(in Chinese).姚梦,张文学,付敏敏,等.热加工工艺,2017 (16),227.
[4] Singh S, Coel D B. Materials Science, 1990, 25,3894.
[5] Zhao G, LI H X, Liu C M, et al. Journal of Northeastern University, 2001, 22(6),664(in Chinese).赵刚,李洪晓,刘春明,等.东北大学学报, 2001, 22(6),664.
[6] Pattanaik S, Srinivasan V, Bhatia M L. Scripta Metallurgica,1972,6(3), 191.
[7] Chung D W, Chaturvedi M C. Advanced Performance Materials, 1981, 41, 27.
[8] Singh S, Goel D B. Bulletin of Materials Science, 1991,14(1), 35.
[9] Mazzini S G. Scripta Metallurgica Et Materialia, 1994,31(9), 1127.
[10] An L H, Cai Y, Liu W, et.al. Science Direct,2012,22(2),370.
[11] Wang H M, Yi Y Y, Huang S S. Journal of Alloys and Compounds,2016,685, 941.
[12] Gavriljuk V G, Berns H, Escher C, et al. Material Science Forum, 1999,318-320(1-2),455.
[13] Yan P, Wang G Q, Li J F. Machinery Design and Manufacture, 2009(3), 99(in Chinese).闫萍,王国庆,李均峰.机械设计与制造,2009(3), 99.
[14] Wang J H, Yi D Q, Su X P, et al. Special Casting and Nonferrous Alloys, 2007, 27(4),246(in Chinese).王建华,易丹青,苏旭平,等. 特种铸造及有色合金,2007, 27(4),246.
[15] Fisher J, James J. Advanced Materials and Processes, 2002, 160(9), 43.
[16] Li H, Wang Z X, Zheng Z Q. Rare Metal Materials and Engineering, 2006(8), 1276(in Chinese).李海,王芝秀,郑子樵.稀有金属材料与工程,2006(8), 1276.
[17] Li C X, San J C, Xu N, et al. Foundry, 2005,54(8),761(in Chinese).李晨希,伞晶超,徐娜,等. 铸造,2005,54(8),761.
[18] Huang Y C, Chen P C, Liu Y. Hot Working Technology, 2016, 23(6), 1001(in Chinese).黄元春,陈鹏冲,刘宇.热加工工艺,2016, 23(6), 1001.
[19] Papazian J M. Metallurgical & Materials Transactions A,1981(12),269.
[20] Natan M, Chihoski R A. Journal of Materials Science, 1983,18(11), 3288.
[21] Ma Z, Xu C Y. Influence of cold deformation and aging on microsture and properties of aluminum alloy 2219. Master’s Thesis, Harbin Institute of Technology, China,2014(in Chinese).马征,徐成彦. 冷变形及时效对2219铝合金组织性能的影响规律.硕士学位论文,哈尔滨工业大学, 2014.
[22] Son S K, Takeda M, Mitome M, et al. Materials Letters, 2005, 59, 629.
[23] Wei X Y, Zheng Z Q, Pan Z R, et al. Rare Metal Materials & Enginee-ring, 2008, 37, 1996.
[24] Yoshimura R, Konno T J, Abe E, et al. Acta Materialia, 2003,51, 4251.
[25] Wang H B, Han J C, Zhang X H, et al. Material Science and Technology, 1998, 9(3),56(in Chinese).王华彬,韩杰才,张幸红,等. 材料科学与工艺,1998, 9(3),56.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[7] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[6] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[7] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed