Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3067-3071    https://doi.org/10.11896/cldb.18090150
  金属与金属基复合材料 |
钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响
武靖伟, 张忠科, 车朋卫
兰州理工大学,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Influence of Brazing Filler Zn on Microstructure and Properties of Titanium/Aluminum Joint by Friction Stir Brazing
WU Jingwei, ZHANG Zhongke, CHE Pengwei
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 3292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过添加不同厚度的钎料Zn对TC4和Al6082进行搅拌摩擦钎焊(FSB)焊接,对焊接接头进行拉剪试验,并对不同厚度钎料Zn下的Ti/Al 搅拌摩擦焊接接头进行剪切强度对比。采用扫描电镜(SEM)和能谱分析仪(EDS)对接头横截面微观组织进行了观察和分析,辨别了不同厚度钎料Zn下接头横截面微观组织以及接头断裂方式的差异,得到最佳参数下接头的温度分布。研究表明:当钎料Zn的厚度为0.05 mm时,Ti/Al接头的强度较其他钎料Zn厚度的接头强度高(154 MPa),约为铝母材剪切强度的75%。中心区域界面层金属间化合物为AlZn,几乎没有Ti-Al金属间化合物生成;Ti/Al接头的断裂方式为脆性断裂+韧性断裂混合型断裂。对于Ti/Al接头的温度分布,随着接头位置逐渐远离焊缝中心,温度峰值先增大后减小,且前进侧的温度高于后退侧。在最高温度260 ℃下,Ti-Zn-Al焊接界面金属间化合物形成的顺序是TiAl2→TiAl3→TiAl→AlZn。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武靖伟
张忠科
车朋卫
关键词:  TC4钛合金/6082铝合金  搅拌摩擦钎焊  钎料Zn  金属间化合物  温度测量    
Abstract: The friction stir brazing (FSB) were conducted to achieve the connection of TC4 and Al6082 by adding various thickness of brazing filler Zn. Then, the tensile and shear tests of the welded Ti/Al joint were carried out, and comparison was made on the shear strength of Ti/Al joint with various thickness of brazing filler Zn. Scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were employed to observe and analyze the cross-section microstructure of the joints. The differences of the cross section microstructure and fracture modes of the Ti/Al joint with various thicknesses of brazing filler Zn were distinguished. Furthermore, the temperature distribution of the Ti/Al joint under the optimum FSB parameters was obtained. It could be found from the research results that the Ti/Al joint with 0.05 mm thick brazing filler Zn exhibit the highest sharing strength (154 MPa), about 75% of that of the base metal. The intermetallic compound AlZn formed in the central region of the interfacial layer, and there was scarcely any Ti-Al intermetallic compound. The fracture mode of Ti/Al joint was defined as mixed fracture of brittle and ductile fracture. Regarding to the temperature distribution on the Ti/Al joint, the peak temperature first rose and then dropped as the location gradually away from the weld center, and the forward side held higher temperature than the backward side. The formation order of the intermetallic compound at the Ti-Zn-Al interface was TiAl2, TiAl3, TiAl and AlZn under the highest temperature of 260 ℃.
Key words:  TC4 and Al6082    friction stir brazing (FSB)    brazing filler Zn    intermetallic compound    temperature measurement
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG146.2  
  TG453.9  
基金资助: 甘肃省科技重大专项(18ZD2GC013);航空科学基金(201611U2001)
通讯作者:  zhangzke@lut.cn   
作者简介:  武靖伟,将于2019年6月毕业于兰州理工大学,获得工学硕士学位,主要从事先进连接技术的研究。
张忠科,副教授,博士。主要研究方向为焊接设备及其自动化,新型连接技术等方面。
引用本文:    
武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
WU Jingwei, ZHANG Zhongke, CHE Pengwei. Influence of Brazing Filler Zn on Microstructure and Properties of Titanium/Aluminum Joint by Friction Stir Brazing. Materials Reports, 2019, 33(18): 3067-3071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090150  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3067
[1] Eylon D, Seagle S R. Journal of Material Science and Technology, 2001, 17(4), 439.
[2] Yan Minggao, Wu Xueren, Zhu Zhishou. Aeronautical Manufacturing Technology, 2003(12), 19(in Chinese).颜鸣皋,吴学仁,朱知寿. 航空制造技术,2003(12),19.
[3] Cabibbo M, Marrone S, Quadrini E. Welding International, 2005, 19(2), 125.
[4] Wildn J, Bergmann J P. Weldin and Cutting, 2004, 3(5), 285.
[5] Ren Jiangwei, Li Yajiang, Feng Tao. Welding Technology, 2002, 56(5),647(in Chinese).任江伟,李亚江,冯涛.焊接技术,2002,56(5),647.
[6] Chen Yuhua,Ni Quan,Huang Chunping, et al. Transactions of the China Welding Institution,2011, 32(9),73(in Chinese).陈玉华,倪泉,黄春平.焊接学报,2011,32(9),73.
[7] Aonuma M, Nakata K. Materials Transactions, 2011, 52(5),948.
[8] Dressler U, Biallas G, Alfaro Mercado U. Materials Science and Engineering A, 2009, 526(1):113.
[9] Chen Y C, Nakata K. Transactions of the China Welding Institution, 2009, 30(3),469.
[10] Zhang Zhenhua, Shen Yifu, Hu Weiye, et al. Transactions of the China Welding Institution, 2016,37(5),28(in Chinese).张振华,沈以赴,胡伟业,等.焊接学报,2016,37(5),28.
[11] Mishra R S, Ma Z Y. Materials Science and Engineering R, 2005, 50,178.
[12] Dressler U, Biallas G, Mercado U A. Materials Science and Engineering A, 2009, 526(1-2),113.
[13] Fuji A, Ikeuchi K, Sato Y S, et al. Science and Technology of Welding and Joining, 2004, 9, 507.
[14] Chen Yukun, Ni Quan, Ke Liming. Transactions of Nonferrous Metals Society of China, 2012, 22(2),299(in Chinese). 陈宇坤,倪泉,柯黎明.中国有色金属学报,2012,22(2),299.
[15] 张贵峰,苏伟,张建勋等.中国专利,200910021918.3,2009.
[16] Zhang Xin. Effects of intermediate layer material on microstructure and properties of friction stir welding joints of Ti/A1 heterogeneous metals. Master’s Thesis, Nanchang University of Aeronautics and Astronautics,2015(in Chinese). 张鑫.中间层材料对Ti/A1异种金属搅拌摩擦焊接头组织及性能的影响.硕士学位论文,南昌航空大学,2015.
[1] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[2] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[3] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[4] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[5] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[6] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[7] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[8] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[9] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[10] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[11] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[12] 朱宗涛, 万占东, 薛珺予. 不锈钢/铝合金异种金属激光-MIG熔钎焊工艺研究*[J]. 《材料导报》期刊社, 2017, 31(12): 52-55.
[13] 石玗,周相龙,朱明,顾玉芬,樊丁. 焊丝成分对铝-铜异种金属熔钎焊接头钎焊界面组织与接头力学性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 61-61.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[6] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[7] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[8] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed