Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3072-3076    https://doi.org/10.11896/cldb.18070193
  金属与金属基复合材料 |
Mg、Si含量对Al-Mg-Si合金显微组织与性能的影响
任智炜, 罗兵辉, 郑亚亚, 高阳, 何川
中南大学材料科学与工程学院,长沙 410083
Effect of Mg and Si Content on Microstructure and Property of Al-Mg-Si Alloy
REN Zhiwei, LUO Binghui, ZHENG Yaya, GAO Yang, HE Chuan
School of Materials Science and Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 3949KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用室温拉伸、晶间腐蚀、电化学极化曲线等实验手段,环境扫描电子显微镜(SEM)、能谱分析(EDS)、透射电子显微镜(TEM)等现代分析测试方法,研究在Mg、Si质量比固定不变时,改变Mg、Si含量对Al-Mg-Si合金显微组织、力学性能与腐蚀性能的影响。结果表明,Mg、Si含量(质量分数)分别从0.6%和0.56%增大到1.6%和1.49%时,晶内β″强化相的密度增大,使得合金的力学性能呈增强趋势。当合金含量继续增大,晶内β″相密度增大不明显,但晶界上MgSi相粗化且出现在晶内,在合金受力断裂时脆性的MgSi相相连直接形成裂纹,使力学性能下降。Mg、Si含量的增大会导致合金的耐腐蚀性能不断下降,这是因为腐蚀先发生在第二相或第二相周围的基体,而合金元素增多将使晶界及晶内出现更多第二相,使腐蚀更容易发生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任智炜
罗兵辉
郑亚亚
高阳
何川
关键词:  Al-Mg-Si合金  腐蚀过程  力学性能  耐腐蚀性能    
Abstract: The effect of Mg and Si content with fixed Mg/Si ratio on the microstructure and properties of Al-Mg-Si alloy was investigated by mechanical properties testing, intergranular corrosion and electrochemical polarization curve, combined with SEM, EDS, TEM techniques. The experimental results indicate that increasing content of Mg and Si from 0.6wt% and 0.56wt% to 1.6wt% and 1.49wt% can improve mechanical property by promoting the precipitation of metastable β″ precipitates. Continuing to increase the content of Mg and Si can coarsen the MgSi phase which would crack easily under stress and lead to the decline of mechanical property. The corrosion resistance of Al-Mg-Si alloy is in inverse proportion to the content of Mg and Si associated with the density of the second phase. Corrosion always occurs in second phase or the matrix around them, while the quantity of second phase is in direct proportion to the element content, which means the alloy with higher content of Mg and Si is more susceptible to be corroded.
Key words:  Al-Mg-Si alloy    corrosion process    mechanical property    corrosion resistance
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG146  
基金资助: 中国国防科技工业局资助项目(2011-006)
通讯作者:  lbh@csu.edu.cn   
作者简介:  任智炜,2016年9月开始在中南大学材料学院进行研究生学习,专注于高性能铝合金的研究。
罗兵辉,中南大学材料科学与工程学院教授,博士研究生导师。2006年11月取得中南大学材料物理博士学位,现主要从事先进金属结构、功能材料理论研究及开发工作,在高强、高韧材料、耐腐蚀材料、先进复合材料(金属陶瓷)及高阻尼材料研制方面做了大量工作,在国内外知名学术刊物上发表论文80余篇。
引用本文:    
任智炜, 罗兵辉, 郑亚亚, 高阳, 何川. Mg、Si含量对Al-Mg-Si合金显微组织与性能的影响[J]. 材料导报, 2019, 33(18): 3072-3076.
REN Zhiwei, LUO Binghui, ZHENG Yaya, GAO Yang, HE Chuan. Effect of Mg and Si Content on Microstructure and Property of Al-Mg-Si Alloy. Materials Reports, 2019, 33(18): 3072-3076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070193  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3072
[1] Abid T,Boubertakh A,Hamamda S. Journal of Alloys and Compounds,2010,490(1),166.
[2] Warner T. Materials Science Forum, 2006, 519-521,1271.
[3] Buchanan K, Colas K, Ribis J, et al. Acta Materialia, 2017, 132,209.
[4] Liu C H, Lai Y X, Chen J H, et al. Scripta Materialia, 2016,115,150.
[5] Jin S X, Ngai T, Zhang G W,et al. Materials Science & Engineering A, 2018, 724,53.
[6] Ninive P H, Strandlie A, Gulbrandsen-dahl S, et al. Acta Materialia, 2014, 69,126.
[7] Eckermann F, Suter T, Uggowitzer P J, et al. Electrochimica Acta, 2008, 54(2),844.
[8] Gupta A K, Lloyd D J, Court S A. Materials Science & Engineering A, 2001, 316(1),11.
[9] Zeng F L, Wei Z L, Li J F, et al. Transactions of Nonferrous Metals So-ciety of China, 2011, 21(12),2559.
[10] Wang J, Luo B H, Zheng Y Y. et al. The Chinese Journal of Nonferrous Metals, 2017, 27(6),1091(in Chinese).王姣, 罗兵辉, 郑亚亚, 等.中国有色金属学报, 2017, 27(6),1091.
[11] Xu X X, Zhao Y, Ye Y L, et al. Materials Characterization, 2016, 119,114.
[12] Cui Y X, Wang C L. Metal fracture analysis, Harbin Institute of Techno-logy Press, China, 1998(in Chinese).崔约贤, 王长利. 金属断口分析, 哈尔滨工业大学出版社, 1998.
[13] Hou D D, Shan J Q, Cao G H, et al. Heat Treatment of Metals,2017,42(10),209(in Chinese).侯丹丹,单际强,曹国华,等.金属热处理, 2017,42(10),209.
[14] Zhang S S. Study on microstructure and homogenization treatment of semicontinuous casting ingot of Al-Mg-Si aluminium alloys. Master’s Thesis, Northeastren University, China,2011(in Chinese).张珊珊. Al-Mg-Si合金铸态组织及其铸锭均匀化处理研究.硕士学位论文,东北大学,2011.
[15] Sang Y, Cheng J H, Liu C H, et al. Journal of Chinese Electron Microscopy Society,2012, 31(5),384(in Chinese).桑益, 陈江华, 刘春辉,等. 电子显微学报, 2012, 31(5),384.
[16] Liao H, Wu Y, Ding K. Materials Science & Engineering A, 2013, 560(1),811.
[17] Ding L P, Jia Z H, Liu Y Y, et al. Journal of Alloys and Compounds, 2016, 688,362.
[18] Li J F, Zheng Z Q, Li S C, et al. Corrosion Science, 2007,49(6), 2436.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[9] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[6] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[7] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[8] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed