Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3908-3912    https://doi.org/10.11896/j.issn.1005-023X.2018.22.012
  金属与金属基复合材料 |
后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响
黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明
南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063
Effects of Post Heat Treatment on Al-Ti Composites Microstructure Prepared by Friction Stir Processing
HUANG Shuowen, HUANG Chunping, WU Zhongwen, XIA Chun, LIU Fencheng, KE Liming
National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 2377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用搅拌摩擦加工技术制备Al-Ti复合材料,并对其进行600 ℃/6 h的后热处理,采用SEM、TEM、XRD对搅拌摩擦区热处理前后的微观组织结构及相进行了分析;采用X射线衍射图分析软件TOPAS测量了搅拌区热处理前后的物相晶格常数,研究了后热处理对搅拌摩擦加工制备的Al-Ti复合材料组织特征的影响。结果表明:600 ℃/6 h后热处理后,金属间化合物与铝基结合界面良好;且后热处理可使Ti、Al和Al3Ti彼此间的扩散速率加快,促进Al3Ti和新相Al5Ti2金属间化合物的产生;此外微观结构中存在位错墙;热处理前后Al3Ti的轴向比c/a都高于标准数据,但热处理后提高了约0.4%,明显低于热处理前约1.2%的增幅;进行后热处理后,Al-Ti复合材料因搅拌摩擦加工引发的微观缺陷的增殖、再次扩散及缺陷间的互作用,使得原位反应再次进行,促使搅拌区金属间化合物含量提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄硕文
黄春平
吴中文
夏春
刘奋成
柯黎明
关键词:  搅拌摩擦加工  Al-Ti复合材料  后热处理  金属间化合物  组织结构    
Abstract: Al-Ti composites were fabricated by friction stir processing (FSP), and then post-treated at 600 ℃/6 h. The microstructures and phases of the friction zone were analyzed by SEM, TEM and XRD. The lattice constant of the phase before and after the heat treatment was measured by X-ray diffraction analysis software TOPAS. The microstructure of Al-Ti composites prepared by friction stir processing were studied at the effects of post-heat treatment. The results show that the intermetallic compound has a good interface with aluminum base after 600 ℃/6 h post heat treatment; the interdiffusion between Ti, Al and Al3Ti can be accele-rated by the post-heat treatment, which can promote the formation of Al3Ti and new phase Al5Ti2 intermetallic compounds. In addition, there exists dislocations walls in the microstructure. The axial ratios of Al3Ti c/a before and after heat treatment are higher than standard data, but the degree of change after heat treatment is about 0.4%, which is obviously lower than that of 1.2% before heat treatment. After the heat treatment, the proliferation, re-diffusion and interaction of the micro-defects caused by the friction stir processing of the Al-Ti composite material cause the in-situ reaction to proceed again, which promotes the increase of the intermetallic compound content in the friction stir zone.
Key words:  friction stir processing    Al-Ti composites    post-heat treatment    intermetallic compound    microstructure
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TB311  
  TG156.99  
  TG146.21  
基金资助: 国家自然科学基金(51465044);江西省自然科学基金(20171BAB206004);南昌航空大学研究生创新专项资金项目(YC2016034)
通讯作者:  黄春平:通信作者,男,1980年生,副教授,研究方向为搅拌摩擦加工、金属增材制造及焊接无损检测 E-mail:hcp98106@163.com   
作者简介:  黄硕文:男,1991年生,硕士研究生,研究方向为搅拌摩擦加工
引用本文:    
黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
HUANG Shuowen, HUANG Chunping, WU Zhongwen, XIA Chun, LIU Fencheng, KE Liming. Effects of Post Heat Treatment on Al-Ti Composites Microstructure Prepared by Friction Stir Processing. Materials Reports, 2018, 32(22): 3908-3912.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.012  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3908
1 Xu Binshi, Tan Jun, Chen Jianmin. Development of science and technology in surface engineering[J]. China Surface Engineering,2011,24(2):1(in Chinese).
徐滨士,谭俊,陈建敏.表面工程领域科学技术发展[J].中国表面工程,2011,24(2):1.
2 Karthikeyan R, Adalarasan R, Pai B C. Optimization of machining characteristics for Al/SiCp composites using ANN/GA[J]. Mate-rials Science and Technology,2002,18(1):47.
3 Srivatsan T S, Al-Hajri M, Smith C, et al. The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite[J]. Materials Science & Engineering A,2003,346(1-2):91.
4 Pan Liwen,Lin Weijuan, Tang Jingfan, et al. The preparation methods and research status of granule reinforced aluminum matrix composites[J]. Materials Review,2016,30(S1):511(in Chinese).
潘利文,林维捐,唐景凡,等.颗粒增强铝基复合材料制备方法及研究现状[J].材料导报,2016,30(专辑27):511.
5 Lei Z, Zhao K, Wang Y, et al. Thermal expansion of Al matrix composites reinforced with hybrid micro-nano-sized Al2O3 particles[J]. Journal of Materials Science & Technology,2014,30(1):61.
6 Chen Dengbin, Zhao Yutao, Li Gu, et al. Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field[J]. Journal of Wuhan University of Technology,2011,26(5):920.
7 Wu Bingbing, Liu Chenglong, Tong Lu, et al. Research progress of friction stir processing on aluminum alloy surface(Ⅱ)——Preparation of surface composite material layer[J]. Materials Review A:Review Papers,2015,29(1):99(in Chinese).
吴冰冰,刘成龙,童路,等.铝合金表面搅拌摩擦加工处理的研究进展(Ⅱ)——表面复合材料层的制备[J].材料导报:综述篇,2015,29(1):99.
8 Xue Peng, Zhang Xingxing, Wu Lihui, et al. Development of friction stir welding and machining[J]. Acta Metallurgica Sinica,2016,52(10):1222(in Chinese).
薛鹏,张星星,吴利辉,等.搅拌摩擦焊接与加工研究进展[J].金属学报,2016,52(10):1222.
9 Qian J W, Li J L, Xiong J T, et al. In-situ synthesized Al3Ti-Al surface composites by friction stir processing [J]. Transactions of the China Welding Institution,2010,8(31):61.
10 Liu P, Shi Q Y, Zhang Y B. Microstructural evaluation and corrosion properties of aluminium matrix surface composite adding Al-based amorphous fabricated by friction stir processing[J]. Compo-sites: Part B,2013,52:137.
11 Shafiei-Zarghani A, Kashani-Bozorg S F, Hanzaki A Z. Wear assessment of Al/Al2O3 nano-composite surface layer produced using friction stir processing[J]. Wear,2011,270(5):403.
12 Rajan H B M, Dinaharan I, Ramabalan S, et al. Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite[J]. Journal of Alloys & Compounds,2016,657:250.
13 You G L, Ho N J, Kao P W. The microstructure and mechanical properties of an Al-CuO in-situ composite produced using friction stir processing[J]. Materials Letters,2013,90(2):26.
14 Arora H, singh H, Dhindaw B. Composite fabrication using friction stir processing—A review[J]. The International Journal of Advanced Manufacturing Technology,2012,61(9-12):1043.
15 Yadav D, Bauri R, Kauffmann A, et al. Al-Ti particulate compo-site: Processing and studies on particle twinning, microstructure, and thermal stability [J]. Metallurgical & Materials Transactions A,2016,47(8):4226.
16 Wang Yunhai, Huang Chunping, Xia Chun, et al. Adding La2O3 to the influence of organization and properties of Ni/Al composite materials was prepared by friction stir processing[J]. Journal of Compo-site Materials,2015,33(9):2067(in Chinese).
汪云海,黄春平,夏春,等.添加La2O3对搅拌摩擦加工制备Ni/Al复合材料组织和性能的影响[J].复合材料学报,2015,33(9):2067.
17 Wang Chenjian, Huang Chunping, Xia Chun, et al.The effects of PTFE on the uniformity of the production of Al-Ni composites by friction stir processing[J]. Rare Metal Materials and Engineering,2015,44(3):169(in Chinese).
王承剑,黄春平,夏春,等.聚四氟乙烯对搅拌摩擦加工制备Al-Ni复合材料均匀性的影响[J].稀有金属材料与工程,2015,44(3):169.
18 Zhang Q, Xiao B L, Ma Z Y. In situ formation of various intermetallic particles in Al-Ti-X (Cu, Mg) systems during friction stir processing [J]. Intermetallics,2013,40(6):36.
19 Chai Fang, Zhang Datong, Li Yuanyuan. Effect of heat treatment on microstructure and mechanical properties of AZ91 magnesium Alloy [J]. Journal of China nonferrous metals,2014,24(12):2951(in Chinese).
柴方,张大童,李元元.热处理对搅拌摩擦加工AZ91镁合金显微组织和力学性能的影响[J].中国有色金属学报,2014,24(12):2951.
20 Sun Yu, Wan Zhipeng, Hu Lianxi, et al. Study on the diffusion reaction of Ti/Al solid phase and its dynamics [J]. Rare Metal Materials and Engineering,2017,46(8):2080(in Chinese).
孙宇,万志鹏,胡连喜,等.Ti/Al固相扩散反应行为及其动力学研究[J].稀有金属材料与工程,2017,46(8):2080.
21 Lee I s, Kao P W, Chang C P, et al. Formation of Al-Mo intermetallic particle-strengthened aluminum alloys by friction stir porceesing[J]. Intermetallics,2013,35:9.
22 Wang Chenjian, Huang Chunping, Xia Chun, et al. Effects of posts heat treatment on Al-Ni composites prepared by frictional stirring processing[J]. Special Casting and Non-ferrous Alloys,2017(2):182(in Chinese).
王承剑,黄春平,夏春,等.后热处理对FSP制备Al-Ni复合材料组织的影响[J].特种铸造及有色合金,2017(2):182.
23 Liu Fencheng, He Lihua, Ke Liming, et al. Effects of heat treatment on microstructure and mechanical properties of MWCNTs/AZ80 magnesium matrix composites[J]. Rare Metal Materials and Engineering,2015,44(4):989(in Chinese).
刘奋成,贺立华,柯黎明,等.热处理MWCNTs/AZ80镁基复合材料组织和力学性能的影响[J].稀有金属材料与工程,2015,44(4):989.
24 Wang Hongtao, Chen Xiao, Bai Xiaobo, et al. The structure and formation mechanism of Al base composite materials were enhanced in situ TiAl3[J]. Rare Metal Materials and Engineering,2016,45(4):1082(in Chinese).
王洪涛,陈枭,白小波,等.原位自生TiAl3增强Al基复合材料的组织结构及形成机理[J].稀有金属材料与工程,2016,45(4):1082.
25 Yang Huaming, Qiu Guanzhou. New progress in mechanical alloying (MA) technology[J]. Rare Metal,1998,22(4):313(in Chinese).
杨华明,邱冠周.机械合金化(MA)技术的新进展[J].稀有金属,1998,22(4):313.
[1] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[2] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[3] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[4] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[5] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[6] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[7] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[8] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[9] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[10] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[11] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[12] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[13] 俞良良, 张郑, 王快社, 王文, 贾少伟. 搅拌摩擦加工对AZ31镁合金微观组织及力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1289-1293.
[14] 席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
[15] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed