Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 582-585    https://doi.org/10.11896/cldb.201904003
  无机非金属及其复合材料 |
硅含量对Al-Si-Cu相变储能材料腐蚀性的影响
张潇华1,于思荣2,郭丽娟1,周扬理1
1 中国石油大学胜利学院机械与控制工程学院,东营 257061;
2 中国石油大学(华东)机电工程学院,青岛 266580
Effect of Si Content on Liquid Corrosivity of Al-Si-Cu Energy Storage Materials
ZHANG Xiaohua1, YU Sirong2, GUO Lijuan1, ZHOU Yangli1
1 Department of Mechanical and Control Engineering, Shengli College, China University of Petroleum, Dongying 257061;
2 College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580
下载:  全 文 ( PDF ) ( 1469KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 合金液的腐蚀性较大是铝合金作为相变储能材料应用的主要瓶颈。鉴于材料成分是影响其液态腐蚀性的重要因素之一,本工作设计了304不锈钢在Al-xSi-10Cu(6≤x≤15)合金液中的腐蚀试验,以期探讨Si含量对该材料液态腐蚀性的影响。采用电子探针和XRD对腐蚀产物的形貌、元素分布和相组成进行了分析,并对腐蚀反应进行了动力学和热力学分析。结果表明:随着Si含量的增加,腐蚀层厚度和腐蚀产物的生长系数先降低后增加,而腐蚀产物的扩散激活能却先增加后降低,但都在Si含量为9%时达到极值。Si含量在6%~9%,当腐蚀时间较短时,腐蚀层由Al95Fe4Cr相和Fe2Al5相组成,Si填充Fe2Al5相的空位,阻碍了元素扩散;当腐蚀时间较长时,腐蚀层由Al95Fe4Cr相、FexSiyAlz相和FeAl相组成,FexSiyAlz相不仅生长速率低还可阻挡元素的扩散,且FeAl相的生成焓大于Fe2Al5相,从而降低腐蚀层的厚度。Si含量在9%~15%内时,腐蚀层厚度增加的具体原因有待进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张潇华
于思荣
郭丽娟
周扬理
关键词:  Si  Al-Si-Cu相变储能材料  液态腐蚀  金属间化合物    
Abstract: High liquid corrosivity has long became the obstacle to the application of Al alloys as phase-change energy-storage materials. It has been common knowledge that the composition of energy storage material is one of the important factors that affect its liquid corrosivity. Thereby, in this work, a corrosion test scheme of 304 stainless steel in liquid Al-xSi-10Cu (6≤x≤15) alloys was conducted, so as to investigate the effect of Si element content on liquid corrosivity. We characterized the morphology, element distribution and phase composition of the corrosion products by means of electron probe and XRD, and also carried out kinetic and thermodynamic analyses for the corrosion reaction. The results showed that with the increase of Si content, both the corrosion layer thickness and the growth coefficient of corrosion products exhibit biphasic (decrease→increase) change, while the diffusion activation energy of corrosion products displays an opposite variation, and all of them reach the minimum or maximum value at the Si content of 9%. When the Si content is in the range of 6%~9%, a short-duration corrosion leads to a corrosion layer mainly composed of Al95Fe4Cr phase and Fe2Al5 phase, the vacancies of the latter of which can be filled by Si atoms so that the corrosive elements diffusion can be attenuated. But a long-duration corrosion leads to a corrosion layer mainly composed of Al95Fe4Cr phase, FexSiyAlz phase and FeAl phase. The FexSiyAlz phase grows quite slowly and can prevent element diffusion. Moreover, the formation enthalpy of FeAl phase is larger than that of Fe2Al5 phase, so the corrosion thickness can be reduced. When the Si content ranges in 9% to 15%, the specific reason for the corrosion thickness increment with the addition Si element remains unclear and further study is needed.
Key words:  Si    Al-Si-Cu phase-change energy-storage material    liquid corrosion    intermetallic compound
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TG178  
基金资助: 教育部中央高校基本科研业务费专项资金资助项目(11CX05003A);中国石油大学胜利学院校级项目(KY2015021)
作者简介:  张潇华,中国石油大学胜利学院讲师,2015年获中国石油大学(华东)工学硕士学位。研究方向为材料失效与表面改性。于思荣,中国石油大学(华东)教授,博士研究生导师。研究方向为金属材料、表面工程。
引用本文:    
张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
ZHANG Xiaohua, YU Sirong, GUO Lijuan, ZHOU Yangli. Effect of Si Content on Liquid Corrosivity of Al-Si-Cu Energy Storage Materials. Materials Reports, 2019, 33(4): 582-585.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904003  或          http://www.mater-rep.com/CN/Y2019/V33/I4/582
1 Huang X. Research on thermal storage properties of phase-change mate-rials based on Mg-Cu-Zn-Al-Si alloy. Master’s Thesis, Wuhan University of Technology,China,2014(in Chinese).黄昕.Mg-Cu-Zn-Al-Si多元合金相变材料储热性能的研究.硕士学位论文,武汉理工大学,2014.2 Su Z, Cheng X M, Zhu J Q, et al. Journal of Functional Materials,2017,48(2),2236(in Chinese).孙正,程晓敏,朱教群,等.功能材料,2017,48(2),2236.3 Xu J, Yu S. Materials Review A:Review Papers,2013,27(10),93(in Chinese).许骏,于思荣.材料导报:综述篇,2013,27(10),93.4 Cheng X M, He G, Wu X W, et al. Materials Review A:Review Papers,2010,24(9),139(in Chinese).程晓敏,何高,吴兴文,等.材料导报:综述篇,2010,24(9),139.5 Dong J. Research on the optimization design and thermal storage properties of high-temperature phase change thermal storage Al-Si-Cu-Mg-Zn alloy. Master’s Thesis, Wuhan University of Technology, China,2009(in Chinese).董静.基于Al-Si-Cu-Mg-Zn合金的高温储热材料优化设计与储热性能研究.硕士学位论文,武汉理工大学,2009.6 Li X H, Li G X, Wu Y, et al. Hot dip plating and seepage plating of steel parts. Chemical Industry Press, China,2009(in Chinese).李新华,李国喜,吴勇,等.钢铁制件热浸镀与渗镀. 化学工业出版社,2009.7 Akdeni M V, Mekhrabov A O, Yilmaz T. Scripta Metallurgica Et Mate-rialia,1994,31(12),1723.8 Qian W J, Gu W G. Acta Metallurgica Sinica,1994,30(9),403(in Chinese).钱卫江,顾文桂.金属学报,1994,30(9),403.9 Han W. Influence of Si on the growth kinetics of Fe2Al5 during reactive diffusion between Fe and Al. Master’s Thesis, Xiangtan University,China,2009(in Chinese).韩炜.Si对Fe-Al反应过程中Fe2Al5相生长动力学的影响.硕士学位论文,湘潭大学,2009.10 Denner S, Jones R, Thomas R. Journal of Iron and Steel Reseach International,1975,48,241.11 Eggeler G, Auer W, Kaesche H. Journal of Materials Science,1986,21(9),3348.12 Chinese Society for Corrosion and Protection. Metal corrosion manual, Shanghai Science and Technology Press, China,1987(in Chinese).中国腐蚀与防护学会.金属腐蚀手册.上海科学出版社,1987.13 Akdeniz M V, Mekhrabov A O. Acta Materialia,1998,46(4),1185.14 Mekhrabov A O, Akdeniz M V. Acta Materialia,1999,47(7),2067.15 Hou Xiaoxia, Yang Hua, Zhao Yan, et al. Materials Letters,2002.58(27-28),3424.16 Zhao G D, Guo P M, Zhao P. Journal of Central South University,2011,42(6),1578(in Chinese).赵定国,郭培民,赵沛.中南大学学报,2011,42(6),1578.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[4] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[5] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[6] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[7] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[8] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[9] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[10] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[11] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[12] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[13] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[14] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[15] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed