Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1466-1474    https://doi.org/10.11896/cldb.18040104
  无机非金属及其复合材料 |
金属辅助化学刻蚀法制备硅纳米线的研究进展
王盼1,2, 童领1,2, 周志文1,2, 杨杰1,2, 王茺1,2, 陈安然2,3, 王荣飞1,2, 孙韬2,3, 杨宇2,3
1 云南大学材料科学与工程学院光电信息材料研究所,昆明 650091;
2 云南大学国家光电子能源材料国际联合研究中心,昆明 650091;
3 云南大学能源研究院,昆明 650091
Progress in Fabrication of Silicon Nanowires by Metal-assisted Chemical Etching
WANG Pan1,2, TONG Ling1,2, ZHOU Zhiwen1,2, YANG Jie1,2, WANG Chong1,2, CHEN Anran2,3, WANG Rongfei1,2, SUN Tao2,3, YANG Yu2,3
1 Institute of Optoelectronic Information Materials, School of Materials Science and Engineering, Yunnan University, Kunming 650091;
2 International Joint Research Center for Optoelectronic and Energy Materials, Yunnan University, Kunming 650091;
3 School of Energy, Yunnan University, Kunming 650091
下载:  全 文 ( PDF ) ( 2974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅纳米线(Si NWs)由于具有独特的一维结构、热电导率、光电性质、电化学性能等特点,被广泛应用于热电与传感器件、光电子元器件、太阳能电池、锂离子电池等领域。金属辅助化学刻蚀法(MACE)是制备Si NWs的常用方法之一,具有操作简便、设备简单、成本低廉和高效等优点,可大规模商业化应用,因而近年来被广泛研究。
金属辅助化学刻蚀制备硅纳米线的过程可以分为两步:首先在洁净的硅衬底表面沉积一层金属(Ag、Au、Pt等)纳米颗粒,以催化、氧化它附近的硅原子;然后利用HF溶解氧化层,从而对硅晶片进行刻蚀,形成纳米线阵列。然而,这种简单高效的制备硅纳米线的方法存在一些难以控制的缺点:(1)金属纳米颗粒聚集、相连后造成Si NWs之间的缝隙比较大,从而导致Si NWs密度较低;(2)由于金属纳米颗粒沉积的随机性,在硅晶片表面分布不均匀,不仅导致刻蚀出的纳米线直径范围(50~200 nm)较宽,而且使制得的纳米线阵列排列无序且间距不易调控;(3)当刻蚀出的硅纳米线太长时,范德华力等作用会造成纳米线顶端出现严重的团簇现象。
针对常规法存在的一些问题以及不同的器件对硅纳米线的形貌、类型和直径等的要求,近年来的研究主要集中在如何减少纳米线顶端团簇、调控纳米表面粗糙度和直径、低成本制备有序硅纳米线等方面。目前一些改进常规金属辅助化学刻蚀的方法取得了进展,比如:(1)用酸溶液或UV/Ozone对硅晶片预处理,在表面形成氧化层,可以使纳米线的均匀性得到改善并增大其密度(从18%提高到38%);(2)使用物理气相沉积法在硅晶片表面沉积一层金属纳米薄膜,然后再刻蚀,这种方法能够减少纳米线顶端团簇和有效调控纳米线直径;(3)利用模板法(聚苯乙烯小球模板、氧化铝模板、二氧化硅模板和光刻胶模板等)可以制备出有序的硅纳米线阵列。本课题组用离子束刻蚀的方法制备了直径范围可以控制在30~90 nm 的聚苯乙烯小球模板,为小尺寸有序硅纳米线的制备打下了坚实的基础。
本文简要介绍了常规MACE的原理和制备流程,总结了硅晶片的类型、刻蚀溶液的浓度、温度和刻蚀时间等因素对Si NWs形貌、尺度、表面粗糙度、刻蚀方向以及刻蚀速率的影响,用相关的机制解释了H2O2过量时刻蚀路径偏离垂直方向的机理以及刻蚀速率随溶液浓度变化的原因,重点综述了氧化层预处理、物理法沉积贵金属纳米薄膜、退火处理和模板法等改进方法在减少纳米线顶部团簇、改善均匀性、制备有序且直径和间距可控纳米线中的研究进展
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王盼
童领
周志文
杨杰
王茺
陈安然
王荣飞
孙韬
杨宇
关键词:  金属辅助化学刻蚀(MACE)  银纳米颗粒(Ag  NPs)辅助  硅纳米线(Si  NWs)    
Abstract: Silicon nanowire arrays (Si NWs) have been extensively used in nanoscale thermoelectric and biosensors, optoelectronic devices, solar cells, lithium-ion battery and other fields, thanks to its unique structure, high thermal conductivity, photoelectric properties and electrochemical performance. The metal-assisted chemical etching (MACE) provides a simple, convenient, low-cost and high efficient approach to fabricate Si NWs, which is most likely to achieve large-scale commercial application and has aroused considerable attention in the past decades.
The processes of preparing silicon nanowires by metal-assisted chemical etching can be separated into two steps. First, a layer of metal (Ag, Au, Pt, et al.) nanoparticles is deposited on the surface of clean silicon wafer to oxidize the nearby silicon atoms. Then dissolve the oxide layer by HF and etch the silicon wafer to form an array of Si NWs. Nevertheless, this simple and efficient approach for preparing Si NWs presents several uncontrollable defects. Firstly, the deposited metal nanoparticles on silicon wafer surface would gradually grow larger and agglomerate together, resulting in low density of Si NWs. Secondly, nonuniformity distribution of metal nanoparticles on silicon wafer not only leads to relatively wide diameter range (50—200 nm) of the fabricated nanowires, but also causes the disorder of nanowire arrays and the difficulty to control their spacing. Thirdly, it is commonly observed that long nanowire clusters at tips, due to van der Waals.
In view of the problems in conventional approaches and the requirements of diverse devices for the morphology, types and diameters of the silicon nanowires, therefore, recent studies have focused on reducing of clusters at the top of nanowires, regulating the surface roughness and diameter of nanowires, and preparing ordered silicon nanowires at low cost. Notable progress has been achieved in optimizing the conventional MACE methods, which can be concluded as follow. Ⅰ. Pre-surface treatment of silicon wafer using acid solution or UV/Ozone will improve the uniformity of nanowire arrays as well as increase the density (from 18% to 38%). Ⅱ. Depositing a layer of metal nano-film on the surface of silicon wafer by physical vapor deposition, followed by etching, can effectively reduce the clusters and improve the uniformity of nanowire diameter. Ⅲ. Template methods (polystyrene spheres templates, porous anodic alumina templates, silica templates, and photoresist templates, etc.) can realize the fabrication of ordered nanowire arrays. The controllable diameter of polystyrene nanoparticles, ranging from 30 nm to 90 nm, were successfully prepared by ion beam etching technology in our research group, which pave an effective way for preparing ordered Si NWs with small size (less than 100 nm).
In this article, the basic synthetic processes and fundamental etching mechanism of MACE are briefly introduced. Specifically, the impact of type of silicon substrate, the concentration of etching solution, temperature and etching time on the morphology, surface roughness, etching direction and etching rate of Si NWs are discussed. The mechanism of etching path deviation from the vertical direction under excessive amount of H2O2 and the reason for the variation of etching rate with the solution concentration are explained by the relevant theories. Emphasis is put on the research progress of reducing the cluster at the top of nanowires, improving uniformity, preparing ordered nanowires with controllable diameters and spacing by approaches including pretreatment of silicon wafer using oxidation layer, deposition of metal nanofilms using physical method, the treatment of annealing and template method.
Key words:  metal-assisted chemical etching (MACE)    silver nanoparticles (Ag NPs)-assisted    silicon nanowires (Si NWs)
                    发布日期:  2019-05-08
ZTFLH:  TB321  
基金资助: 云南大学服务云南行动计划基金(2016MS15);国家自然科学基金(11504322;11804295);云南大学东陆中青年骨干教师(C176220200);云南省应用基础研究项目(2016FB081;2018FD012);东陆青年项目(WX069051)
通讯作者:  yuyang@ynu.edu.cn   
作者简介:  王盼,2015年毕业于河南城建学院应用物理学专业,获得理学学士学位。现为云南大学硕士研究生,在杨宇教授的指导下进行研究。目前主要研究领域为用于锂离子电池的纳米结构硅基负极材料。杨宇,云南大学教授,能源研究院院长,博士生导师。1995年在复旦大学物理系凝聚态物理专业取得博士学位;1995年到1997年,在中国科学院上海冶金研究所从事博士后的研究工作;2006年到2008年期间,以访问学者的身份在哈佛大学工程与应用科学学院进行科学研究。任《材料导报》、《红外技术》、《功能材料》、《人工晶体学报》等杂志编委会委员。现担任云南大学学术委员会委员、云南省科技厅专家、云南高校学术委员会委员、云南高校科研学会理事长及863材料科学与工程领域的通讯评审专家。研究领域包括:“半导体低维材料光电性能研究和器件的制备”和“新能源材料与器件”。
引用本文:    
王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
WANG Pan, TONG Ling, ZHOU Zhiwen, YANG Jie, WANG Chong, CHEN Anran, WANG Rongfei, SUN Tao, YANG Yu. Progress in Fabrication of Silicon Nanowires by Metal-assisted Chemical Etching. Materials Reports, 2019, 33(9): 1466-1474.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040104  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1466
1 Zhao Y, Yang L, Kong L, et al. Advanced Functional Materials,2017,27(40),1.
2 Presnova G, Presnov D, Krupenin V, et al. Biosens Bioelectron,2017,88(SI),283.
3 Ben Rabha M, Khezami L, Jemai A B, et al. Journal of Crystal Growth,2017,462,35.
4 Otnes G, Borgstr m M T. Nano Today,2017,12,31.
5 Hwang C, Lee K, Um H D, et al. Journal of the Electrochemical Society,2017,164(7),A1564.
6 Togonal A S, Foldyna M, Chen W, et al. Journal of Physical Chemistry C,2016,120(5),2962.
7 Bogart T D, Oka D, Lu X, et al. ACS Nano,2014,8(1),915.
8 Brodoceanu D, Alhmoud H Z, Elnathan R, et al. Nanotechnology,2016,27(7),075301.
9 Tabassi M Y, Zaghouani R B, Khelil M, et al. Journal of Materials Science: Materials in Electronics,2017,28(13),9717.
10 Zhang J G, Liu J, Wang D, et al. Journal of Power Sources,2010,195(6),1691.
11 Henry M D, Shearn M J, Chhim B, et al. Nanotechnology,2010,21(24),245303.
12 Zhong X, Qu Y, Lin Y C, et al. ACS Applied Materials & Interfaces,2011,3(2),261.
13 Li S, Ma W, Zhou Y, et al. Journal of Solid State Chemistry,2014,213,242.
14 Li S, Ma W, Zhou Y, et al. Nanoscale Research Letters,2014,9(1),196.
15 Chen C Y, Wei T C, Lin C T, et al. Scientific Reports,2017,7(1),3164.
16 Peng K Q, Yan Y J, Gao S P, et al. Advanced Materials,2002,14(16),1164.
17 Peng K, Lu A, Zhang R, et al. Advanced Functional Materials,2010,18(19),3026.
18 Geyer N, Wollschlager N, Fuhrmann B, et al. Nanotechnology,2015,26(24),245301.
19 Xiao Y Y, Chen X H, Ma W H, et al. International Journal of Materials Research,2014,809-810(4),93.
20 Chen C Y, Wong C P. Nanoscale,2015,7(3),1216.
21 Li M, Li Y, Liu W, et al. Materials Research Bulletin,2016,76,436.
22 Zhang M L, Peng K Q, Fan X, et al. Journal of Physical Chemistry C,2008,112(12),4444.
23 Bai F, Li M, Song D, et al. Journal of Solid State Chemistry,2012,196,596.
24 Chen C Y, Wu C S, Chou C J, et al. Advanced Materials,2008,20(20),3811.
25 He X, Li S, Ma W, et al. Materials Letters,2017,196,269.
26 Li S, Ma W, Chen X, et al. Applied Surface Science,2016,369,232.
27 Wang X, Huang L, Zhang Y, et al. Ionics,2017,24(2),373.
28 Peng K Q, Hu J J, Yan Y J, et al. Advanced Functional Materials,2006,16(3),387.
29 Jung J Y, Guo Z, Jee S W, et al. Optics Express,2010,18 Suppl 3(19),A286.
30 Cao D T, Ngan L T Q, Viet T V, et al. International Journal of Nanotechnology,2013,10(3/4),343.
31 Liu Y, Sun W, Jiang Y, et al. Materials Letters,2015,139,437.
32 Baek S H, Park J S, Jeong Y M, et al. Journal of Alloys and Compounds,2016,660,387.
33 Omar H, Jani A M M, Rusop M, et al. In: International Conference on Nano-electronic Technology Devices and Materials 2015. America,2016,pp.020016.
34 Chiappini C. MACE Silicon Nanostructures, Springer International Publis-hing Press, UK,2014.
35 Jung J Y, Guo Z, Jee S W, et al. Nanotechnology,2010,21(44),445303.
36 Chang S W, Chuang V P, Boles S T, et al. Advanced Functional Mate-rials,2009,19(15),2495.
37 Bai F, Li M, Huang R, et al. Journal of Nanoparticle Research,2013,15(9),1915.
38 Sun L, Fan Y, Wang X, et al. Nanotechnology,2014,25(25),255302.
39 Zhu Y F, Zhou L, Pan C J, et al. Journal of Materials Science: Materials in Electronics,2016,27(6),5833.
40 Wang W, Li D, Tian M, et al. Applied Surface Science,2012,258(22),8649.
41 Kato S, Watanabe Y, Kurokawa Y, et al. Japanese Journal of Applied Physics,2012,51(2),02BP9.
42 Shiu S, Lin S, Hung S, et al. Applied Surface Science,2011,257(6),1829.
43 Hung Y J, Lee S L, Syu H J, et al. In: proceedings of the CLEO: Science and Innovations. San Jose,2013,pp.1.
44 Hung Y J, Lee S L. Solar Energy Materials and Solar Cells,2014,130(SI),573.
45 Hung Y J, Li S L, Wu K C, et al. IEEE Photonics Journal,2011,3(3),617.
46 De B J, Geyer N, Wittemann J V, et al. Nanotechnology,2010,21(9),095302.
47 Li L, Fang Y, Xu C, et al. Nanotechnology,2016,27(16),165303.
48 Huang Z, Fang H, Zhu J. Advanced Materials,2007,19(5),744.
49 Su S, Lin L, Li Z, et al. Nanoscale Research Letters,2013,8(1),405.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[3] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[4] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[5] 王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
[6] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[7] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[8] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[9] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[10] 秦晓素,黄洁,雷云,杨泽斌,陈庆华,颜廷亭. 明胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能[J]. 《材料导报》期刊社, 2018, 32(12): 1967-1972.
[11] 毕玉水. 时间控制/pH依赖型盐酸黄连素结肠给药系统的控释性能[J]. 《材料导报》期刊社, 2018, 32(12): 1973-1977.
[12] 贺春林,高建君,王苓飞,马国峰,刘岩,王建明. N2流量对反应共溅射TiN/Ni纳米复合膜结构和结合强度的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2038-2042.
[13] 詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
[14] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[15] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed