Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2062-2065    https://doi.org/10.11896/j.issn.1005-023X.2018.12.023
  材料研究 |
羟基含量对全氧燃烧浮法玻璃结构弛豫的影响
詹伟涛1,贺建雄2,3,王艺臻4,姜宏1,2,3
1 海南大学海南省特种玻璃重点实验室, 海口570228;
2 海南中航特玻科技有限公司, 澄迈571924;
3 特种玻璃国家重点实验室, 澄迈571924;
4 海南师范大学物理与电子工程学院, 海口 571100
Influence of Hydroxyl Content on Structural Relaxation in Oxy-fuel Combustion Float Glass
ZHAN Weitao1, HE Jianxiong2,3, WANG Yizheng4, JIANG Hong1,2,3
1 Special Glass Key Laboratory of Hainan Province, Hainan University, Haikou 570228;
2 AVIC Hainan Special Glass Technology Co., Ltd., Chengmai 571924;
3 State Key Laboratory of Special Glass, Chengmai 571924;
4 School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571100
下载:  全 文 ( PDF ) ( 2779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用红外光谱法和动态热机械分析(DMA)法研究了羟基含量对全氧燃烧浮法玻璃结构弛豫的影响。在540 ℃以上发现了类似于金属玻璃的α弛豫现象。通过Arrhenius方程拟合得出,气氛比(H2O与CO2气体体积比)为2∶1的全氧燃烧浮法玻璃、气氛比为1∶1的全氧燃烧浮法玻璃和空气助燃浮法玻璃的激活能分别为4.74 eV、5.82 eV和7.50 eV。由组态熵模型拟合的全氧燃烧浮法玻璃的组态熵值高于空气助燃浮法玻璃,且气氛比为2∶1的全氧燃烧浮法玻璃的组态熵值高于气氛比为1∶1的全氧燃烧浮法玻璃,说明全氧燃烧浮法玻璃的内部结构相比空气助燃浮法玻璃更加无序,而增加全氧燃烧熔窑内的水含量使全氧燃烧浮法玻璃的内部结构更无序,这也印证了羟基含量会对全氧燃烧浮法玻璃的结构弛豫造成一定的影响。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹伟涛
贺建雄
王艺臻
姜宏
关键词:  全氧燃烧浮法玻璃  羟基含量  激活能  组态熵    
Abstract: The present work investigated the influence of hydroxyl content on structural relaxation in oxy-fuel combustion float glass by means of infrared spectroscopy and dynamic mechanical analysis (DMA). An α-relaxation similar to metallic glass at above 540 ℃ was observed in the oxy-fuel combustion float glass. The apparent activation energy (obtained by fitting Arrhenius equation) values for oxy-fuel combustion float glass with 2∶1 atmosphere ratio (H2O/CO2 gas volume ratio), oxy-fuel combustion float glass with 1∶1 atmosphere ratio and air-fuel combustion float glass are 4.74 eV,5.82 eV and 7.50 eV, respectively. Meanwhile, the configurational entropy (obtained by fitting the configurational entropy loss law) values of oxy-fuel combustion float glass are higher than that of air-fuel combustion float glass, in which atmosphere ratio of 2∶1 corresponds to a greater configurational entropy compared to atmosphere ratio of 1∶1. This connoted the more disordered internal structure of oxy-fuel combustion float glass compared to air-fuel combustion float glass, as well as the disordering effect of the water vapor in the furnace onto the internal structure of oxy-fuel combustion float glass, and thereby confirming that the hydroxyl content exerts a certain influence on structural relaxation of the oxy-fuel combustion float glass.
Key words:  oxy-fuel combustion float glass    hydroxyl content    apparent activation energy    configurational entropy
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TB321  
  O411.1  
基金资助: 国家自然科学基金(51562008)
作者简介:  詹伟涛:男,1993年生,硕士研究生,研究方向为全氧燃烧浮法玻璃中的羟基含量与热力学性能的关系 E-mail:wtzhan0821@163.com 姜宏:通信作者,男,1961年生,博士,教授,博士研究生导师,研究方向为浮法玻璃的工艺技术和工程技术、新型玻璃的研发 E-mail:jhong63908889@sina.com
引用本文:    
詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
ZHAN Weitao, HE Jianxiong, WANG Yizheng, JIANG Hong. Influence of Hydroxyl Content on Structural Relaxation in Oxy-fuel Combustion Float Glass. Materials Reports, 2018, 32(12): 2062-2065.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.023  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2062
1 Duan Qiutong. Study of the reaction of the water vapor and the glass melt together with the effects on the structure and property of glass under the oxy-fuel combustion[D].Haikou: Hainan University,2015(in Chinese).
段秋桐.全氧燃烧条件下水蒸气与玻璃熔体的反应及对玻璃结构和性能影响的研究[D].海口:海南大学,2015.
2 姜宏,段秋桐,赵会峰.全氧燃烧技术在浮法玻璃中的应用[C]∥全国玻璃窑炉技术研讨交流会.洛阳,2015.
3 Duan Q T, Jiang H, Zhao H F. Effects of H2O upon performance of oxy-fuel float glass[J].Journal of Materials Science and Engineering,2016,34(1):115(in Chinese).
段秋桐,姜宏,赵会峰.水分对全氧燃烧浮法玻璃性能的影响[J].材料科学与工程学报,2016,34(1):115.
4 罗宗南,钟原,杨耕兴.红外光谱法测定玻璃中羟基含量[J].灯与照明,1999,23(6):1.
5 Behrens H, Stuke A. Quantification of H2O contents in silicate glasses using IR spectroscopy—A calibration based on hydrous glasses analyzed by Karl-Fischer titration[J]. Glass Science and Technology,2003,76(4):176.
6 Harder U, Gei ler H. IR spectroscopic investigations on the determination of the water content in glasses[J]. Fresenius’ Journal of Analytical Chemistry,1998,361(6):585.
7 Taylor T D, Rindone G E. The influence of the distribution of water in silicate glasses on mechanical relaxation[J]. Journal of Non-Crystalline Solids,1974,14(1):157.
8 Li M, et al. Microstructure and performances of glasses melt under oxy-fuel combustion[J]. Journal of Wuhan University of Technology-Materials Science Edition,2017,32(1):19.
9 Wang Q, Zhang S T, Yang Y, et al. Unusual fast secondary relaxation in metallic glass[J]. Nature Communications,2014,6:7876.
10 Qiao J, Pelletier J M, Casalini R. Relaxation of bulk metallic glasses studied by mechanical spectroscopy[J]. Journal of Physical Chemistry B,2013,117(43):13658.
11 Qiao J C, Pelletier J M. Dynamic mechanical relaxation in bulk metallic glasses: A review[J]. Journal of Materials Science & Techno-logy,2014,30(6):523.
12 Dai Z X, Zhao H F, Jiang H, et al. Analysis of effect of melting atmosphere on tin penetration in float glass[J]. Materials Review,2016,30(s1):395(in Chinese).
代志祥,赵会峰,姜宏,等.熔化气氛对浮法玻璃渗锡影响的分析[J].材料导报,2016,30(专辑27):395.
13 Day D E, Stevels J M. Effect of dissolved water on the internal friction of glass[J]. Journal of Non-Crystalline Solids,1974,14(1):165.
14 Wang Y Z, Zhang X F, Zhang J X. A “configurational entropy-loss” law for non-Arrhenius relaxation in disordered systems[J]. Journal of Applied Physics,2012,113(19):226.
15 Yizhen Wang, Lan Chen, et al. Development of “fragility” in relaxor ferroelectrics[J]. Journal of Applied Physics,2014,115(5):241.
16 Tomozawa M, Li H, Davis K M. Water diffusion, oxygen vacancy annihilation and structural relaxation in silica glasses[J]. Journal of Non-crystalline Solids,1994,179(21):162.
17 Tanaka H, Kawasaki T, Shintani H, et al. Critical-like behaviour of glass-forming liquids[J]. Nature Materials,2010,9(4):324.
18 Naraev V N. The influence of water on the glass properties[J]. Glass Physics and Chemistry,2004,30(5):367.
19 Mcmillan P W, Chlebik A. The effect of hydroxyl ion content on the mechanical and other properties of soda-lime-silica glass[J]. Journal of Non-Crystalline Solids,1980,38(5):509.
20 Ye J C, Lu J, Liu C T, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses[J]. Nature Materials,2010,9(8):619.
[1] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[2] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[3] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[4] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed