Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2329-2334    https://doi.org/10.11896/j.issn.1005-023X.2018.14.001
  无机非金属及其复合材料 |
无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究
李之锋, 罗垂意, 王春香, 钟盛文, 张骞
江西理工大学材料科学与工程学院,江西省动力电池及其材料重点实验室,赣州 341000
Synthesis and Property of F-doped LiNi0.7Mn0.3O2 Cobalt-free Nickel-rich Cathode Material for Li-ion Battery
LI Zhifeng, LUO Chuiyi, WANG Chunxiang, ZHONG Shengwen, ZHANG Qian
Jiangxi Key Laboratory of Power Battery and Material, School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 8450KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以硫酸盐为原料,采用共沉淀-固相反应法成功制备了LiNi0.7Mn0.3O2-xFx(x=0,0.01,0.02,0.03)正极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)、循环伏安法(CV)、充放电测试等系统地研究了F掺杂对无钴镍基正极材料LiNi0.7Mn0.3O2-xFx(x=0,0.01,0.02,0.03)结构和电化学性能的影响。X射线衍射结果表明,所有样品均具有典型的α-NaFeO2层状结构,随着F掺杂量的增加,材料晶胞体积逐渐增大;扫描电镜结果显示,F掺入使材料的一次颗粒形状更加规则、均匀、致密,且尺寸更大、结晶度更高。X射线光电子能谱(XPS)测试结果表明,F掺入之后,材料中二价镍的含量增加,其他元素的化合价保持不变。电化学阻抗谱(EIS)和循环伏安(CV)曲线数据证实掺适量F可以减小电池的电化学转移内阻(Rct)和电极的极化作用。F掺杂虽然减小了材料的首次放电容量,但提高了材料的首次库伦效率和循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李之锋
罗垂意
王春香
钟盛文
张骞
关键词:  正极材料  LiNi0.7Mn0.3O2  电化学性能  F掺杂  锂离子电池    
Abstract: The F-doped LiNi0.7Mn0.3O2-xFx(x=0,0.01,0.02,0.03) cathode materials were synthesized by calcining the mixtures of LiOH·H2O,LiF and Ni0.7Mn0.3(OH)2 precursor formed through a simple continuous co-precipitation method. The effects of F doping on the crystal structure and electrochemical properties of LiNi0.7Mn0.3O2 were investigated systematically by X-ray diffraction (XRD),scanning electron microscope(SEM) and various electrochemical measurement. The XRD results showed that with the increasing F doping amount, the cell volume of the F-doped LiNi0.7Mn0.3O2 samples were slightly larger than that of pure LiNi0.7-Mn0.3O2, and F doping did not change the basic α-NaFeO2 layered structure. SEM results indicated F-doped samples showed slightly larger primary particle size and uniform morphology than pristine sample. X-ray photoelectron spectroscopy (XPS) test results showed that the content of divalent nickel in the material increased and the valence of other elements kept constant after F doping.Moreover, F-doping could improve the crystallinity of LiNi0.7Mn0.3O2.EIS and CV test revealed that the charge transfer resistance(Rct) and electrode polarization were reduced by F-doping. In spite of initial decreased discharge capacity, the columbic efficiency and cycle performance also improved.
Key words:  cathode materials    LiNi0.7Mn0.3O2    electrochemical properties    F-doping    lithium ion battery
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TB321  
  O64  
基金资助: 国家自然科学基金(51373104);江西省科技计划项目(20141BBE50019);江西省对外科技合作项目(20123BDH80016)
通讯作者:  钟盛文,男,1963年生,博士,教授,研究方向为锂离子电池及其正极材料 E-mail:zhongshw@126.com   
作者简介:  李之锋:男,1979年生,博士,副教授,研究方向为锂离子电池正极材料 E-mail:jxlzfeng@163.com
引用本文:    
李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
LI Zhifeng, LUO Chuiyi, WANG Chunxiang, ZHONG Shengwen, ZHANG Qian. Synthesis and Property of F-doped LiNi0.7Mn0.3O2 Cobalt-free Nickel-rich Cathode Material for Li-ion Battery. Materials Reports, 2018, 32(14): 2329-2334.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.001  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2329
1 Schipper F, Erickson E M, Erk C, et al. Review—recent advances and remaining challenges for lithium ion battery cathodes: I. Nickel-rich, LiNixCoyMnzO2[J]. Journal of the Electrochemical Society,2017,164(1):A6220.
2 Dou S. Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2013,17(4):911.
3 Hwang I, Lee C W, Kim J C, et al. Particle size effect of Ni-rich cathode materials on lithium ion battery performance[J]. Materials Research Bulletin,2012,47(1):73.
4 Song D, Hou P, Wang X, et al. Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials[J]. ACS Applied Materials & Interfaces,2015,7(23):12864.
5 Sun Y K, Lee B R, Noh H J, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. Journal of Materials Chemistry,2011,21(27):10108.
6 Du Ke, Huang Jinlong, Hu Guorong, et al. Research on synthesis and performance of composite cathode material Li[Ni0.92Co0.04-Mn0.04]O2 with gradient-coating layers as lithium ion battery[J]. Chinese Journal of Inorganic Chemistry,2013,29(5):1031(in Chinese).
杜柯,黄金龙,胡国荣,等.梯度包覆镍酸锂材料Li[Ni0.92Co0.04-Mn0.04]O2的合成与研究[J].无机化学学报,2013,29(5):1031.
7 Wang D, Li X, Wang Z, et al. Co-modification of LiNi0.5Co0.2Mn0.3-O2, cathode materials with zirconium substitution and surface polypyrrole coating: Towards superior high voltage electrochemical performances for lithium ion batteries[J]. Electrochimica Acta,2016,196:101.
8 Xu Y, Liu Y, Lu Z, et al. The preparation and role of Li2ZrO3, surface coating LiNi0.5Co0.2Mn0.3O2, as cathode for lithium-ion batteries[J]. Applied Surface Science,2016,361:150.
9 Li L, Ming X, Qi Y, et al. Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(45):30879.
10 Duan J, Hu G, Cao Y, et al. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15 Al0.035O2, via Al gradient doping[J]. Journal of Power Sources,2016,326:322.
11 Tang Z F, Wu R, Huang P F, et al. Improving the electrochemical performance of Ni-rich cathode material LiNi0.815Co0.15Al0.035O2 by removing the lithium residues and forming Li3PO4 coating layer[J]. Journal of Alloys & Compounds,2016,693:1157.
12 Zhao R, Yang Z, Liang J, et al. Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2[J]. Journal of Alloys & Compounds,2016,689:318.
13 Schipper F, Dixit M, Kovacheva D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: Zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A,2016,4(41):16073.
14 Kang K, Carlier D, Reed J, et al. Synthesis and electrochemical properties of layered Li0.9Ni0.45Ti0.55O2[J]. Chemistry of Mate-rials,2003,15(23):4503.
15 Zhong S, Lai M, Yao W, et al. Synthesis and electrochemical pro-perties of LiNi0.8CoxMn0.2-xO2, positive-electrode material for lithium-ion batteries[J]. Electrochimica Acta,2016,212:343.
16 Saavedra-Arias J J, Rao C V, Shojan J, et al. A combined first-principles computational/experimental study on LiNi0.66Co0.17Mn0.17O2 as a potential layered cathode material[J]. Journal of Power Sources,2012,211(211):12.
17 Zhang L, Dong T, Yu X, et al. Synthesis and electrochemical performance of LiNi0.7Co0.15Mn0.15O2, as gradient cathode material for lithium batteries[J]. Materials Research Bulletin,2012,47(11):3269.
18 Mudit Dixit, Boris Markovsky, Doron Aurbach,et al. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5-Co0.2Mn0.3O2 using first principles[J]. Journal of the Electrochemical Society,2017,164(1): A6359.
19 Ceder G, Ven A V D. Phase diagrams of lithium transition metal oxides: Investigations from first principles[J]. Electrochimica Acta,1999,45(1-2):131.
20 Liu W J, Zhang Y, Wang F, et al. Synthesis and electrochemical properties of Li1.03Co 0.1Mn1.9FzO4-z material for lithium-ion batte-ries[J]. Transactions of Nonferrous Metals Society of China,2013,23(8):2312.
21 Li Xinhai, He Fangyong, Guo Huajun, et al. Synthesis and electrochemical performance of LiMn2O4 doped with F-[J].The Chinese Journal of Nonferrous Metals,2008,18(1):54(in Chinese).
李新海,何方勇,郭华军,等.F-掺杂LiMn2O4的合成及电化学性能[J].中国有色金属学报,2008,18(1):54.
22 Xia Junlei, Zhao Shixi, Liu Hanxing, et al. Study on the mechanism of influence on LiMn2O4 by F-dopant[J].Journal of Functional Materials,2004,35(1):74(in Chinese).
夏君磊,赵世玺,刘韩星,等.F掺杂影响LiMn2O4性能的机理研究[J].功能材料,2004,35(1):74.
23 Yi T, Hu X, Wang D, et al. Effects of Al, F dual substitutions on the structure and electrochemical properties of lithium manganese oxide[J]. Journal of University of Science and Technology Beijing,2008,15(2):182.
24 Su R, Dai C. Synthesis and electrochemical behavior of Mg, F dual substitutions spinel LiMg0.1Mn1.9O3.95F0.05[J]. Rare Metal Mate-rials & Engineering,2007,36(5):182.
25 Meng Mianwu, Liao Qinhong, Jiang Enyuan, et al. Effects of doping elements lanthanum and fluorine on structure and electrochemical performance of spinel LiMn2O4 cathode material[J]. Rare Metal Materials and Engineering,2009,38(6):995(in Chinese).
蒙冕武,廖钦洪,江恩源,等.掺杂元素La、F对尖晶石LiMn2O4材料结构及性能的影响[J].稀有金属材料与工程,2009,38(6):995.
26 He Y S, Pei L, Liao X Z, et al. Synthesis of LiNi1/3Co1/3Mn1/3-O2-zFz, cathode material from oxalate precursors for lithium ion battery[J]. Journal of Fluorine Chemistry,2007,128(2):139.
27 Masaya Kageyama, Decheng Li, Koichi Kobayakawa, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx, prepared by solid state reaction[J]. Journal of Power Sources,2006,157:494.
28 Zheng J, Wu X, Yang Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2, cathode material by fluorine incorporation[J]. Electrochimica Acta,2013,105(26):200.
29 Woo S U, Park B C, Yoon C S, et al. Improvement of Electroche-mical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution[J]. Journal of the Electrochemical Society,2007,154(7):A649.
30 Zhang H, Song T. Synthesis and performance of fluorine substituted Li1.05(Ni0.5Mn0.5)0.95O2-xFx, cathode materials modified by surface coating with FePO4[J]. Electrochimica Acta,2013:116.
31 Zhang X, Mauger A, Qi L, et al. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2, by wet-chemical method[J]. ECS Transactions,2010,55(22):6440.
32 Konishi H, Yoshikawa M, Hirano T. The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8-Mn0.1-xCo0.1MoxO2(x=0,0.02,0.04)[J]. Journal of Power Sources,2013,244(4):23.
33 Kou Y, Han E, Zhu L Z, et al. The effect of Ti doping on electrochemical properties of Li1.167Ni0.4Mn0.383 Co0.05O2, for lithium-ion batteries[J]. Solid State Ionics,2016,296:154.
34 Fu C, Li G, Luo D, et al. Nickel-rich layered microspheres ca-thodes: Lithium/nickel disordering and electrochemical performance[J]. ACS Applied Materials & Interfaces,2014,6(18):15822.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[11] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[12] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[13] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[14] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[15] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed