Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1795-1805    https://doi.org/10.11896/j.issn.1005-023X.2018.11.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
定向凝固法多晶硅杂质控制数值模拟概述
苏文佳,牛文清,齐小方,李琛,王军锋
江苏大学能源与动力工程学院,镇江 212013
A Review of Numerical Simulation for Impurity Control in the Directional Solidification Process of Multicrystalline Silicon
SU Wenjia, NIU Wenqing, QI Xiaofang, LI Chen, WANG Junfeng
School of Energy and Power, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 2022KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在传统能源日渐消耗及可再生能源开发利用日趋受到重视的形势下,太阳能光伏发电逐渐成为最具潜力的可再生能源技术之一。多晶硅凭借高效率、低成本的优势成为最主要的光伏材料,其铸锭的品质和成本将直接影响太阳能电池的成本和光电转换效率。定向凝固法是制备多晶硅铸锭的重要方法,该方法晶硅生长过程中存在很多问题,包括熔体流动、杂质传输、固液界面的形状和结构以及缺陷。定向凝固过程中引入的有害杂质严重影响晶硅的机械和电学性能,是限制多晶硅光电转换效率的关键因素。
    长晶过程中定向凝固炉处于高温环境中,内部的传热传质极其复杂,不具备单一的线性关系和可推断性,且难于进行实验测量,因而数值模拟是研究定向凝固过程中传热传质现象的重要方式。降低长晶过程中杂质的含量可从两方面入手:(1)杂质的来源——原材料本身所携带的杂质和长晶过程中生成的杂质;(2)杂质的输运——找到杂质在熔体和氩气中的输运规律,并利用该规律控制杂质的分凝与输运。
    近年来,从控制杂质产生和输运的角度考虑,国内外对降低多晶硅中有害杂质的研究主要采用以下手段:(1)控制杂质产生,包括减缓坩埚与挡板之间的化学反应、优化顶部坩埚盖板、增设碳化硅涂层等;(2)优化氩气流动,例如使用导流系统、调整炉膛压力和氩气流量;(3)优化熔体对流形式,包括控制熔体流动方式及分凝、调整加热器功率大小及其排布、采用可旋转坩埚和调整石墨碳毡位置等。
    为进一步降低定向凝固法多晶硅铸锭成本,坩埚尺寸和投料量不断增大,熔体对流、杂质输运和界面形状也更加难于控制,外加磁场则成为控制熔体对流的一种强有力工具,并能进一步控制杂质输运。目前利用外加磁场控制定向凝固法多晶硅杂质的研究仍刚刚起步,具有很大的研究价值,其中电磁场(EMF)和行波磁场(TMF)在控制搅拌熔体对流方面具有巨大潜力,逐渐被用于多晶硅长晶过程。
    本文在深入分析杂质来源和输运机理的基础上,综述了国内外对多晶硅定向凝固过程中有害杂质的产生、分布、输运以及排出等问题的研究现状,总结了数值模拟中氩气导流系统、加热器以及外加磁场等因素对杂质的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏文佳
牛文清
齐小方
李琛
王军锋
关键词:  多晶硅铸锭  数值模拟优化  定向凝固法  杂质输运与控制  磁场    
Abstract: The continuous consumption of traditional energy sources is exaggerating the prominence of renewable energy production and utilization, and solar photovoltaic power generation has gradually been regarded as one of the most promising renewable energy techniques. Multicrystalline silicon, owing to high efficiency and low cost, has now become the most important photovoltaic material, and quality and cost of its ingot will directly affect the cost of solar cells and the efficiency of photoelectric conversion. Directional solidification (DS) method is an important way to obtain multicrystalline silicon ingot, but suffers many problems in the growth of crystalline silicon, including melt flow, impurities transfer, shape and structure of solid-liquid(S-L) interface, and defects. Harmful impurities introduced during the directional solidification process will seriously affect the ingot’s mechanical and electrical properties, and thus are the key factor limiting the photoelectric conversion efficiency of multicrystalline silicon.
    The heat and mass transfer in the DS furnace under high temperatures during the crystal growth process is extremely complica-ted and shows no single linear relationship, no inferentiality, and difficulty for experimental measurements. So the numerical simulation is considered as an important way to study the heat and mass transfer in the DS process. There have been two useful aspects for the reduction of impurities: I. the source of impurities — impurities in the raw materials and impurities generated during the crystal growth process; II. transport of impurities — finding the transport rule of impurities in melts and argon, and using this rule to control the segregation and transport of impurities.
    In recent years, from the perspective of controlling the impurity generation and transport, most of the research works which intend to reduce the harmful impurities in multicrystalline silicon involve the following methods: I. controlling the source of impurities, including inhibiting the chemical reaction between crucible and baffle, optimizing top crucible cover plate, and introducing silicon carbide coating, etc.; II. improving argon flow by adopting argon guidance system, regulating furnace pressure and argon flow rate; III. optimizing melt convection, including controlling melt flow and segregation, adjusting the power and arrangement of heaters, adopting rotatable crucible, adjusting the position of graphite carbon felt and so on.
    The intention to cut the cost of DS multicrystalline silicon ingot gives rise to increasingly bigger crucible and larger feeding amount, which make the melt convection, impurity transport and interface shape more difficult to control. The external magnetic field has been proved to be powerful in controlling melt convection and further controlling impurity transport, and the relevant research is still in its infancy. As the electromagnetic field (EMF) and traveling magnetic field (TMF) display great potential in controlling the stirring melt convection, they have gradually found application in the crystal growth process.
    On the basis of an analysis over impurity sources and transport mechanism, this review provides a comprehensive description of the generation, distribution, transport and removal of harmful impurities in the directional solidification process, as well as a summary of the effects of argon guidance system, heaters and magnetic field on impurities with respect to numerical simulation optimization.
Key words:  multicrystalline silicon ingot    numerical simulation optimization    directional solidification system    impurity transport and control    magnetic field
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB321  
  O77+5  
基金资助: 国家自然科学基金青年基金(51206069);高等学校博士学科点专项科研基金(20123227120017);江苏省自然科学基金青年基金(BK2012295);江苏大学高级专业人才科研启动基金(1281130015);江苏省博士后科研资助计划(1301049C)
作者简介:  苏文佳:男,1982年生,副教授,硕士研究生导师,主要从事太阳能级晶体硅等晶体生长的传热传质数值模拟 E-mail:wjsu@ujs.edu.cn 王军锋:男,1975年生,教授,博士研究生导师,主要从事流体力学模拟与测试 E-mail:wangjunfeng@ujs.edu.cn
引用本文:    
苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
SU Wenjia, NIU Wenqing, QI Xiaofang, LI Chen, WANG Junfeng. A Review of Numerical Simulation for Impurity Control in the Directional Solidification Process of Multicrystalline Silicon. Materials Reports, 2018, 32(11): 1795-1805.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.005  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1795
1 Green M A, Bremner S P. Energy conversion approaches and mate-rials for high-efficiency photovoltaics[J].Nature Materials,2016,16(1):23.
2 Yang W H,Li L F,Huang R F,et al.Mass spectrometric methods of impurity analysis in solar-grade crystalline silicon[J].Journal of Chinese Mass Spectrometry Society,2011,32(2):121(in Chinese).
杨旺火,李灵锋,黄荣夫,等.太阳能级晶体硅中杂质的质谱检测方法[J].质谱学报,2011,32(2):121.
3 Tan Y, Wang P, Qin S Q, et al. Research progress of properties of carbon, nitrogen, oxygen impurities in polycrystalline silicon ingots[J].Materials Review A: Review Papers,2015,29(11):15(in Chinese).
谭毅,王鹏,秦世强,等.多晶硅铸锭中碳、氮、氧杂质特性的研究进展[J].材料导报:综述篇,2015,29(11):15.
4 Chen J, Sekiguchi T, Nara S, et al. The characterization of high quality multicrystalline silicon by the electron beam induced current method[J].Journal of Physics Condensed Matter,2003,16(2):S211.
5 Mller H J, Funke C, Lawerenz A, et al. Oxygen and lattice distortion in multicrystalline silicon[J].Solar Energy Materials & Solar Cells,2002,72:403.
6 Wu H J, Chen X H, Ma W H, et al. Research status on the multi-crystalline silicon for solar cells and its gettering technology[J].Materials Review A: Review Papers,2010,24(8):135(in Chinese).
吴洪军,陈秀华,马文会,等.太阳电池用多晶硅及其吸杂研究现状[J].材料导报:综述篇,2010,24(8):135.
7 Périchaud I. Gettering of impurities in solar silicon[J].Solar Energy Materials & Solar Cells,2002,72(1-4):315.
8 Schultz O, Glunz S W, Riepe S, et al. High-efficiency solar cells on phosphorus gettered multicrystalline silicon substrates[J].Progress in Photovoltaics Research & Applications,2006,14(8):711.
9 Macdonald D, Cuevas A, Ferrazza F. Response to phosphorus gettering of different regions of cast multicrystalline silicon ingots[J].Solid-State Electronics,1999,43(3):575.
10 Boudaden J, Monna R, Loghmarti M, et al. Comparison of phosphorus gettering for different multicrystalline silicon[J].Solar Energy Materials & Solar Cells,2002,72(1-4):381.
11 Kveder V, Schrter W, Sattler A, et al. Simulation of Al and phosphorus diffusion gettering in Si[J].Materials Science & Engineering B,2000,71(1-3):175.
12 Zhao Y G, Chen Q, et al. A transductive learning algorithm based on support vector machine[J].Journal of Southern Yangtze University(Natural Science Edition),2006,5(4):441(in Chinese).
赵英刚,陈奇,等.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441.
13 Apel M, Hanke I, Schindler R, et al. Aluminum gettering of cobalt in silicon[J].Journal of Applied Physics,1994,76(7):4432.
14 Weber E R. Understanding defects in semiconductors as key to advancing device technology[J].Physica B Condensed Matter,2003,340-342:1.
15 Mahfoud K, Pivac B, Muller J C. P/Al co-gettering effectiveness in various polycrystalline silicon[J].Solar Energy Materials & Solar Cells,1997,46(2):123.
16 Mahfoud K, Loghmarti M, Muller J C, et al. Influence of carbon and oxygen on phosphorus and aluminium co-gettering in silicon solar cells[J].Materials Science & Engineering B,1996,36(1):63.
17 Lee S, Lee E. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells[J].Journal of Nanoscience & Nanotechnology,2007,7(11):3713.
18 Ghannam M, Palmers G, Elgamel H E, et al. Comparison between different schemes for passivation of multicrystalline silicon solar cells by means of hydrogen plasma and front side oxidation[J].Applied Physics Letters,1993,62(11):1280.
19 Martinuzzi S, Périchaud I, Warchol F. Hydrogen passivation of defects in multicrystalline silicon solar cells[J].Solar Energy Materials & Solar Cells,2003,80(3):343.
20 Yu Q H. Investigation of coupled transport of thermal-mass-flow-magnetic multiple fields in a directional solidification process for crystalline silicon solar cells[D].Xi’an: Xi’an Jiao Tong University,2014(in Chinese).
余庆华.太阳电池用晶体硅定向凝固过程中热质流磁多场耦合输运研究[D].西安:西安交通大学,2014.
21 Qi X F. Numerical investigation of heat and mass transport and grain evolution in directional solidification process for silicon ingots[D].Xi’an:Xi’an Jiao Tong University,2014(in Chinese).
齐小芳.晶硅铸锭定向凝固过程中热质输运和晶粒生长的数值研究[D].西安:西安交通大学,2014.
22 Kvande R, Arnberg L, Martin C. Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells[J].Journal of Crystal Growth,2009,311(3):765.
23 Wan Q, Li Y Z, Xu B K, et al. A study of the carbide and its origin in polycrystalline silicon[J].Journal of Semiconductors,1984,5(4):360(in Chinese).
万群,李玉珍,徐宝琨,等.多晶硅中碳化物及其来源的研究[J].半导体学报,1984,5(4):360.
24 Xi Z Q, Yang D R, Chen J. Research progress of cast multicrystalline silicon[J].Materials Review,2001,15(2):67(in Chinese).
席珍强,杨德仁,陈君.铸造多晶硅的研究进展[J].材料导报,2001,15(2):67.
25 佘思明.半导体硅材料学[M].长沙:中南工业大学出版社,1992.
26 Mller H J, Kaden T, Scholz S, et al. Improving solar grade silicon by controlling extended defect generation and foreign atom defect interactions[J].Applied Physics A,2009,96(1):207.
27 Shi J, Zong W F. Research on mechanism of impact of casting furnace thermal field on crucible reliability——Analysis of the crucible corrotion by liquid silicon and its relationship to temperature, materials and thermal field[J].Acta Energiae Solaris Sinica,2014,35(3):502(in Chinese).
史珺,宗卫峰.铸锭炉热场对坩埚可靠性影响的机理研究——硅液对于石英坩埚的侵蚀及其与温度、坩埚材质和热场的关系分析[J].太阳能学报,2014,35(3):502.
28 Zhong G X, Zhou L, Zhou P B, et.al. Development of studies of crystallization structures, crystal defects and impurities in multicrystailine silicon by unidirectional solidification[J].Materials Review,2008,22(12):14(in Chinese).
钟根香,周浪,周潘兵,等.定向凝固多晶硅的结晶组织及晶体缺陷与杂质研究[J].材料导报,2008,22(12):14.
29 Macdonald D, Cuevas A, Kinomura A, et al. Transition-metal profiles in a multicrystalline silicon ingot[J].Journal of Applied Physics,2005,97(3):033523.
30 Weimer A W, Nilsen K J, Cochran G A, et al. Kinetics of carbo-thermal reduction synthesis of beta silicon carbide[J].Aiche Journal,1993,39(3):493.
31 Gao B, Nakano S, Kakimoto K. Influence of reaction between silica crucible and graphite susceptor on impurities of multicrystalline silicon in a unidirectional solidification furnace[J].Journal of Crystal Growth,2011,314(1):239.
32 Gao B, Nakano S, Kakimoto K. Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace[J].Journal of Crystal Growth,2011,318(1):255.
33 Hoshikawa K, Huang X. Oxygen transportation during Czochralski silicon crystal growth[J].Materials Science & Engineering B,2000,72(2-3):73.
34 Clarke D R, Lange F F, Schnittgrund G D. ChemInform abstract: Strengthening of a sintered silicon nitride by a post-fabrication heat treatment[J].Journal of the American Ceramic Society,2010,65(4):c51.
35 Matsuo H, Ganesh R B, Nakano S, et al. Thermodynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell[J].Journal of Crystal Growth,2008,310(22):4666.
36 Ji S S, Zuo R, Su W J, et al. Effect of crucible surface coating on transport of as-grown impurity in multicrystalline silicon[J].Journal of Synthetic Crystals,2013,42(10):2177(in Chinese).
季尚司,左然,苏文佳,等.石英坩埚表面涂层对铸造多晶硅生长中杂质传输的影响[J].人工晶体学报,2013,42(10):2177.
37 Gao B, Nakano S, Kakimoto K. Reduction of oxygen impurity in multicrystalline silicon production[J].International Journal of Photoenergy,2013,2013(1):14.
38 Bellmann M, Meese E, Arnberg L. Impurity segregation in directional solidified multi-crystalline silicon[J].Journal of Crystal Growth,2010,312(21):3091.
39 Popescu A, Vizman D. Numerical study of the influence of melt convection on the crucible dissolution rate in a silicon directional solidification process[J].International Journal of Heat and Mass Transfer,2011,54(25):5540.
40 Wu B, Clark R. Influence of inclusion on nucleation of silicon casting for photovoltaic (PV) application[J].Journal of Crystal Growth,2011,318(1):200.
41 Gao B, Chen X J, Nakano S, et al. Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells[J].Journal of Crystal Growth,2010,312(9):1572.
42 Teng Y Y, Chen J C, Lu C W, et al. Numerical investigation of oxygen impurity distribution during multicrystalline silicon crystal growth using a gas flow guidance device[J].Journal of Crystal Growth,2012,360(1):12.
43 Teng Y Y, Chen J C, Huang B S, et al. Numerical simulation of impurity transport under the effect of a gas flow guidance device during the growth of multicrystalline silicon ingots by the directional solidification process[J].Journal of Crystal Growth,2014,385(1):1.
44 Liu L, Qi X, Ma W, et al. Control of the gas flow in an industrial directional solidification furnace for production of high purity multicrystalline silicon ingots[J].International Journal of Photoenergy,2015,2015:1.
45 Su W J, Zuo R, Cheng X N, et al. Design and numerical optimization of Ar flow guiding system in polysilicon furnace[J].Rengong Jingti Xuebao/Journal of Synthetic Crystals,2014,43(5):1236(in Chinese).
苏文佳,左然,程晓农,等.多晶硅炉氩气导流系统设计与数值模拟优化[J].人工晶体学报,2014,43(5):1236.
46 Bellmann M P, Lindholm D, MHamdi M. A novel method for gas flow and impurity control in directional solidification of multi-crystalline silicon[J].Journal of Crystal Growth,2014,399(8):33.
47 苏文佳,左然.一种多晶硅铸锭炉氩气导流系统及其导流方法:中国,CN103590103A[P].2014.
48 Li Z Y, Liu L J, Ma W C, et al. Effects of argon flow rate on the thermal field in a casting furnace for multi-crystalline silicon[J].Journal of Engineering Thermophysics,2012,33(1):143(in Chinese).
李早阳,刘立军,马文成,等.氩气流量对多晶硅定向凝固炉热场的影响[J].工程热物理学报,2012,33(1):143.
49 Li Z Y, Liu L J, Ma W C, et al. Effects of argon flow on heat transfer in a directional solidification process for silicon solar cells[J].Journal of Crystal Growth,2011,318(1):298.
50 Li Z Y, Liu L J, Ma W C, et al. Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells[J].Journal of Crystal Growth,2011,318(1):304.
51 Kakimoto K, Gao B, Nakano S. Numerical analysis of light elements transport in a unidirectional solidification furnace[J].Physica Status Solidi,2010,8(3):659.
52 Teng Y Y, Chen J C, Lu C W, et al. Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process[J].Journal of Crystal Growth,2011,318(1):224.
53 Ren S, Li P, Jiang D, et al. Removal of Cu, Mn and Na in multicrystalline silicon by directional solidification under low vacuum condition[J].Vacuum,2015,115:108.
54 Tan Y, Ren S, Shi S, et al. Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification[J].Vacuum,2014,99(1):272.
55 Mühlbauer A, Diers V, Walther A, et al. Removal of C/SiC from liquid silicon by directional solidification[J].Journal of Crystal Growth,1991,108(1-2):41.
56 Liu L, Nakano S, Kakimoto K. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells[J].Journal of Crystal Growth,2008,310(7-9):2192.
57 Mangelinck-Nol N, Duffar T. Modelling of the transition from a planar faceted front to equiaxed growth: Application to photovoltaic polycrystalline silicon[J].Journal of Crystal Growth,2008,311(1):20.
58 Teng Y Y, Chen J C, Lu C W, et al. The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process[J].Journal of Crystal Growth,2010,312(8):1282.
59 Kakimoto K, Liu L, Nakano S. Analysis of temperature and impurity distributions in a unidirectional-solidification process for multi-crystalline silicon of solar cells by a global model[J].Materials Science & Engineering B,2006,134(2):269.
60 Ellingsen K, Lindholm D, M Hamdi M. The effect of heating power on impurity formation and transport during the holding phase in a Bridgman furnace for directional solidification of multi-crystalline silicon[J].Journal of Crystal Growth,2016,444:39.
61 Nakano S, Gao B, Kakimoto K. Relationship between oxygen impurity distribution in multicrystalline solar cell silicon and the use of top and side heaters during manufacture[J].Journal of Crystal Growth,2013,375(3):62.
62 Li Z, Liu L, Liu X, et al. Heat transfer in an industrial directional solidification furnace with multi-heaters for silicon ingots[J].Journal of Crystal Growth,2014,385(1):9.
63 Nakano S, Liu L J, Chen X J, et al. Effect of crucible rotation on oxygen concentration in the polycrystalline silicon grown by the unidirectional solidification method[J].Journal of Crystal Growth,2009,311(311):1051.
64 Nguyen T H T, Liao S H, Chen J C, et al. Effects of the hot zone design during the growth of large size multi-crystalline silicon ingots by the seeded directional solidification process[J].Journal of Crystal Growth,2016,452:27.
65 Bridgman P W. The effect of tension on the transverse and longitudinal resistance of metals[J].Proceedings of the American Academy of Arts & Sciences,1925,60(8):423.
66 Stockbarger D C. The production of large single crystals of lithium fluoride[J].Review of Scientific Instruments,1936,7(3):133.
67 Brown R A, Kim D H. Modelling of directional solidification: From Scheil to detailed numerical simulation[J].Journal of Crystal Growth,1991,109(s1-4):50.
68 Vizman D, Friedrich J, Mueller G. 3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process[J].Journal of Crystal Growth,2007,303(1):231.
69 Istratov A A, Buonassisi T, Pickett M D, et al. Control of metal impurities in “dirty” multicrystalline silicon for solar cells[J].Materials Science & Engineering B,2006,134(2-3):282.
70 Miyazawa H, Liu L, Hisamatsu S, et al. Numerical analysis of the influence of tilt of crucibles on interface shape and fields of temperature and velocity in the unidirectional solidification process[J].Journal of Crystal Growth,2008,310(6):1034.
71 Srinivasan M, Ramasamy P. Computational modelling on heat transfer study of molten silicon during multi-crystalline silicon growth process for PV applications[J].Silicon,2015,9(1):1.
72 Wei J, Zhang H, Zheng L, et al. Modeling and improvement of silicon ingot directional solidification for industrial production systems[J].Solar Energy Materials & Solar Cells,2009,93(9):1531.
73 Series R W. Czochralski growth of silicon under an axial magnetic field[J].Journal of Crystal Growth,1989,97(1):85.
74 Hirata H, Hoshikawa K. Homogeneous increase in oxygen concentration in Czochralski silicon crystals by a cusp magnetic field[J].Journal of Crystal Growth,1989,98(98):777.
75 Kawado S, Maruyama T, Suzuki T, et al. Crystal perfection of silicon single crystals grown by the magnetic-field-applied Czochralski method[J].Journal of the Electrochemical Society,1986,133(1):171.
76 Pfann W G, Hagelbarger D W. Electromagnetic suspension of a molten zone[J].Journal of Applied Physics,1956,27(1):12.
77 Dold P, Benz K W. Rotating magnetic fields: Fluid flow and crystal growth applications[J].Progress in Crystal Growth & Characterization of Materials,1999,38(1-4):39.
78 Ono N. A numerical study of the effects of electromagnetic stirring on the distributions of temperature and oxygen concentration in silicon double-crucible Czochralski processing[J].Journal of the Electrochemical Society,1997,144(2):764.
79 Abritska M Y, Gorbunov L A. Effect of a variable magnetic field on hydrodynamics of a melt in the process of obtaining monocrystals with Czochralski’s method[J].Magnetohydrodynamics,1992,1992(4):398.
80 Mitric A, Duffar T, Diaz-Guerra C, et al. Growth of Ga1-x Inx Sb alloys by vertical Bridgman technique under alternating magnetic field[J].Journal of Crystal Growth,2006,287(2):224.
81 Schwesig P, Hainke M, Friedrich J, et al. Comparative numerical study of the effects of rotating and travelling magnetic fields on the interface shape and thermal stress in the VGF growth of InP crystals[J].Journal of Crystal Growth,2004,266(1-3):224.
82 Yesilyurt S, Motakef S, Grugel R, et al. The effect of the traveling magnetic field (TMF) on the buoyancy-induced convection in the vertical Bridgman growth of semiconductors[J].Journal of Crystal Growth,2004,263(1-4):80.
83 Youdelis W V, Dorward R C. Directional solidification of aluminium-copper alloys in a magnetic field[J].Canadian Journal of Physics,2002,44(44):139.
84 Biloni H, Chalmers B. Origin of the equiaxed zone in small ingots[J].Journal of Materials Science,1968,3(2):139.
85 Li X, Ren Z, Fautrelle Y. The spiral growth of lamellar eutectics in a high magnetic field during the directional solidification process[J].Scripta Materialia,2007,56(6):505.
86 Rango P D, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field[J].Nature,1991,349(6312):770.
87 Ma Y, Watanabe K, Awaji S, et al. Enhancement of YBa2Cu3O7, films on polycrystalline silver substrates by metalorganic chemical vapor deposition in high magnetic fields[J].Applied Physics Letters,2000,77(22):3633.
88 Badica P, Togano K, Awaji S, et al. Application of elevated magne-tic fields during growth of BiSrCaCuO superconducting whiskers and studies of growth defects for better understanding of the growth mechanism[J].Journal of Crystal Growth,2004,269(2-4):518.
89 Sazaki G, Yoshida E, Komatsu H, et al. Effects of a magnetic field on the nucleation and growth of protein crystals[J].Journal of Crystal Growth,1997,173(1-2):231.
90 Ataka M, Katoh E, Wakayama N I. Magnetic orientation as a tool to
study the initial stage of crystallization of lysozyme[J].Journal of Crystal Growth,1997,173(3-4):592.
91 Moreno A, Quiroz-García B, Yokaichiya F, et al. Protein crystal growth in gels and stationary magnetic fields[J].Crystal Research & Technology,2007,42(3):231.
92 Grants I, Pedchenko A, Gerbeth G. Experimental study of the suppression of Rayleigh-Bénard instability in a cylinder by combined rotating and static magnetic fields[J].Physics of Fluids,2006,18(12):521.
93 Wang X, Ma N, Bliss D F, et al. Comparing modified vertical gra-dient freezing with rotating magnetic fields or with steady magnetic and electric fields[J].Journal of Crystal Growth,2006,287(2):270.
94 Galindoa V, Gerbeth G, Ammonb W V, et al. Crystal growth melt flow control by means of magnetic fields[J].Energy Conversion & Management,2002,43(3):309.
95 Stiller J, Koal K. Direct simulation of turbulence in the flow driven by rotating and traveling magnetic fields[J].Journal of Turbulence,2009,10:1.
96 Tomzig E, Virbulis J, Ammon W V, et al. Application of dynamic and combined magnetic fields in the 300 mm silicon single-crystal growth[J].Materials Science in Semiconductor Processing,2002,5(4-5):347.
97 Vizman D, Friedrich J, Müller G. Comparison of the predictions from 3D numerical simulation with temperature distributions mea-sured in Si Czochralski melts under the influence of different magnetic fields[J].Journal of Crystal Growth,2001,230(1):73.
98 Muiznieks A, Krauze A, Nacke B. Convective phenomena in large melts including magnetic fields[J].Journal of Crystal Growth,2007,303(1):211.
99 Rudolph P. Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale[J].Journal of Crystal Growth,2008,310(7-9):1298.
100 Liu L, Kakimoto K. Effects of crystal rotation rate on the melt-crystal interface of a CZ-Si crystal growth in a transverse magnetic field[J].Journal of Crystal Growth,2008,310(2):306.
101 Wunderwald U, Dadzis K, Zschorsch M, et al. Influence of travelling magnetic fields on melt convection during Bridgeman type solidification of multi-crystalline silicon[J].Journal of Experimental Zoology,2009,164(164):1.
102 Dadzis K, Ehrig J, Niemietz K, et al. Model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field[J].Journal of Crystal Growth,2011,333(1):7.
103 Dadzis K, Niemietz K, Ptzold O, et al. Non-isothermal model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field[J].Journal of Crystal Growth,2013,372(1):145.
104 Dadzis K, Vizman D, Friedrich J. Unsteady coupled 3D calculations of melt flow, interface shape, and species transport for directional solidification of silicon in a traveling magnetic field[J].Journal of Crystal Growth,2013,367(10):77.
105 Vizman D, Dadzis K, Friedrich J. Numerical parameter studies of 3D melt flow and interface shape for directional solidification of silicon in a traveling magnetic field[J].Journal of Crystal Growth,2013,381(1):169.
106 Yu Q, Liu L, Li Z, et al. Global simulations of heat transfer in directional solidification of multi-crystalline silicon ingots under a traveling magnetic field[J].Journal of Crystal Growth,2014,401(9):285.
107 Dadzis K, Lukin G, Meier D, et al. Directional melting and solidification of gallium in a traveling magnetic field as a model experiment for silicon processes[J].Journal of Crystal Growth,2016,445:90.
108 Dropka N, Ervik T, Czupalla M, et al. Scale up aspects of directional solidification and Czochralski silicon growth processes in tra-veling magnetic fields[J].Journal of Crystal Growth,2016,451:95.
109 Liu L, Kitashima T, Kakimoto K. Global analysis of effects of magnetic field configuration on melt-crystal interface shape and melt flow in CZ-Si crystal growth[J].Journal of Crystal Growth,2005,275(275):2135.
110 Tanasie C, Vizman D, Friedrich J. Numerical study of the influence of different types of magnetic fields on the interface shape in directional solidification of multi-crystalline silicon ingots[J].Journal of Crystal Growth,2011,318(1):293.
111 Negrila R A, Popescu A, Vizman D. Numerical and experimental modeling of melt flow in a directional solidification configuration under the combined influence of electrical current and magnetic field[J].European Journal of Mechanics-B/Fluids,2015,52:147.
112 Sun S H, Tan Y, Dong W, et al. Resistivity distribution of multicrystalline silicon ingot grown by directional solidification[J].Journal of Materials Engineering and Performance,2012,21(6):1.
113 Li P, Ren S, Jiang D, et al. Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification[J].Journal of Crystal Growth,2015,437:14.
[1] 刘飞, 尹健, 邵琦, 卢春辉. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33(2): 293-297.
[2] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[3] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[4] 白庆伟,麻永林,邢淑清,冯艳飞,鲍鑫宇,陈重毅. 表面脉冲电磁场处理下7A04铝合金凝固组织演变[J]. 《材料导报》期刊社, 2018, 32(12): 2021-2027.
[5] 苏 岚,张楚博,汪 振,米振莉. 热金属气压成型电磁感应加热有限元模拟[J]. 《材料导报》期刊社, 2017, 31(24): 182-177.
[6] 王宏明,储强泽,李桂荣,程江峰,朱弋. 静磁场深冷处理对铝黄铜组织和性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 82-86.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed