Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1247-1251    https://doi.org/10.11896/j.issn.1005-023X.2018.08.008
  材料研究 |
利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果
谢丽娜1,2,3,4, 罗聪2, 吴嘉敏5, 王昌绚1,2,3,4, 邬均2
1 重庆医科大学附属儿童医院儿科研究所,儿童发育疾病研究教育部重点实验室,重庆 400014;
2 重庆医科大学附属儿童医院骨科,重庆 400014;
3 重庆医科大学附属儿童医院儿科研究所,儿童发育重大疾病国家国际科技合作基地,重庆 400014;
4 重庆医科大学附属儿童医院儿科研究所, 儿科学重庆市重点实验室, 重庆 400014;
5 重庆大学电气工程学院,输配电装备及系统安全与新技术国家重点实验室,重庆 400044
Improved Magnetofection Efficiency of Polyethylene-modified Fe3O4 Nanoparticles by Exerting a Uniform Magnetic Field
XIE Lina1,2,3,4, LUO Cong2, WU Jiamin5, WANG Changxuan1,2,3,4, WU Jun2
1 Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing 400014;
2 Department of Orthopaedics, Children’s Hospital of ChongqingMedical University, Chongqing 400014;
3 China International Science and Technology Cooperation Base of ChildDevelopment and Critical Disorders, Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing 400014;
4 Key Laboratory of Pediatrics, Pediatric Research Institute, Children’s Hospital of ChongqingMedical University, Chongqing 400014;
5 State Key Laboratory of Power Transmission Equipment and SystemSecurity and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 2273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 首次研究了不同均匀度磁场对磁转染效果的影响。测定了单边Halbach磁体和商品化96孔磁板的磁场均匀度。以化学共沉淀法制备聚乙烯亚胺(Polyethyleneimine,PEI)修饰的四氧化三铁(Fe3O4)纳米颗粒(PEI-Fe3O4),并用透射电子显微镜(TEM)、振动样品磁强计(VSM)、原子力显微镜、琼脂糖凝胶电泳等对其形貌、组成、DNA结合能力等进行表征。用倒置荧光显微镜、流式细胞术观察不同均匀度磁场下人肾上皮细胞(HEK293)对带有绿色荧光蛋白报告基因(GFP)的质粒pDNA(pAdTrack-OK)的表达效果,并采用TEM观察PEI-Fe3O4磁性纳米颗粒进入细胞的过程。结果显示,所选取的两种磁场均匀度相差约100倍。制备的PEI-Fe3O4纳米复合物具有超顺磁性,对质粒pDNA(pAdTrack-OK)有较好的复合能力,其最佳结合氮磷比为0.5;流式细胞术显示转染效率为PEI-Fe3O4-pDNA+均匀磁场组(77.75%±0.07%)>PEI-Fe3O4-pDNA+不均匀磁场组(30.65%±0.49%)>PEI-Fe3O4-pDNA不加磁场组(7.90%±0.56%)(p<0.05);PEI-Fe3O4磁性纳米颗粒能有效被细胞吞噬,且对细胞形态的影响不大。结果表明,当磁场强度一定时,磁场均匀度越高,磁转染效率越高,单边Halbach磁体与磁转染结合可以作为一种提高转染效率的新手段,也可以进一步应用在基因治疗中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢丽娜
罗聪
吴嘉敏
王昌绚
邬均
关键词:  磁转染  均匀磁场  不均匀磁场  超顺磁性纳米颗粒    
Abstract: The effect of uniform magnetic field(MF) on magnetofection was studied for the first time. The uniformity of the unilateral Halbach magnet and the commercialized 96 hole magnet were measured. Polyethyleneimine (PEI) modified ferroferric oxide (Fe3O4) nanoparticles (PEI-Fe3O4) were prepared by chemical coprecipitation. The morphology, composition and the DNA binding ability of PEI-Fe3O4were charaterized by transmission electron microscope (TEM), vibrating sample magnetometer (VSM), atomic force microscopy and agarose gel electrophoresis. The green fluorescent protein (GFP) expression efficiency in human renal epithelial cells (HEK293) under different uniformity of magnetic field was detected with inverted fluorescence microscope and flow cytometry. The phagocytosis of PEI-Fe3O4nanoparticles was observed by TEM. The results showed that the difference of uniformity of the two magnetic fields was about 100 times. The superparamagnetic PEI-Fe3O4 has a good compound ability for plasmid pDNA, and its optimal combination ratio is N/P=0.5. Flow cytometry showed that the transfection efficiency was: PEI-Fe3O4-pDNA+ uniform MF group (77.75%±0.07%)>PEI-Fe3O4-pDNA+ nonuniform MF group (30.65%±0.49%)>PEI-Fe3O4-pDNA without MF group (7.90%±0.56%) (p<0.05). PEI-Fe3O4 magnetic nanoparticles can be effectively consumed by cells and have little effect on cell morphology. It can be concluded that when the magnetic field intensity is certain, higher uniformity of magnetic field contributes to the higher the magnetic transfection efficiency. The combination of the unilateral Halbach magnet and the magnetosfection can be used as a new method to improve the transfection rate, which may potentially be employed in gene therapy.
Key words:  magnetofection    uniform magnetic field    nonuniform magnetic field    magnetic nanoparticles
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  Q812  
基金资助: 国家自然科学基金(30973062); 国家临床重点专科建设项目(国卫办医函[2013]544)
通讯作者:  罗聪: 通信作者,男,1966年生,博士,副教授,硕士研究生导师,主要从事磁靶向、骨组织工程和磁性纳米材料等研究 E-mail:luocong919@sohu.com   
作者简介:  谢丽娜:女,1992年生,硕士,主要从事磁靶向、骨组织工程和磁性纳米材料等研究 E-mail:1139717516@qq.com
引用本文:    
谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
XIE Lina, LUO Cong, WU Jiamin, WANG Changxuan, WU Jun. Improved Magnetofection Efficiency of Polyethylene-modified Fe3O4 Nanoparticles by Exerting a Uniform Magnetic Field. Materials Reports, 2018, 32(8): 1247-1251.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.008  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1247
1 Orkin S H, Reilly P. Medicine. Paying for future success in gene therapy[J].Science,2016,352(6289):1059.
2 Buchschacher G L, Wong-Staal F. Development of lentiviral vectors for gene therapy for human diseases[J].Blood,2000,95(8):2499.
3 Raisin S, Morille M, Bony C, et al. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection[J].Biomaterials Science,2017,5(9):1910.
4 Hardee C L, Arévalo-Soliz L M, Hornstein B D, et al. Advances in non-viral DNA vectors for gene therapy[J].Genes(Basel),2017,8(2):65.
5 Khabou H, Dalkara D. Developments in gene delivery vectors for ocular gene therapy[J].Medecine Sciences M/s(Paris),2015,31(5):529.
6 Goodwin T, Huang L. Nonviral vectors: We have come a long way[J].Advances in Genetics,2014,88:1.
7 Vainauska D, Kozireva S, Karpovs A, et al. A novel approach for nucleic acid delivery into cancer cells[J].Medicina (Kaunas),2012,48(6):324.
8 Smolders S, Kessels S, Smolders S M, et al. Magnetofection is superior to other chemical transfection methods in a microglial cell line[J].Journal of Neuroscience Methods,2017,293:169.
9 Laurentt N, Sapet C, Le G L, et al. Nucleic acid delivery using magnetic nanoparticles: The magnetofection technology[J].Therapeutic Delivery,2011,2(4):471.
10 Mok H, Zhang M.Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics[J].Expert Opinion on Drug Delivery,2013,10(1):73.
11 Tan Y M, Shao H P, Ji Y, et al. Preparation and research of stable Fe3O4 magnetic nanofluids in kerosene[J].Powder Metallurgy Technology,2012,30(3):163(in Chinese).
谭易明,邵慧萍,季业,等.稳定性油基纳米Fe3O4磁性流体的制备与性能研究[J].粉末冶金技术,2012,30(3):163.
12 Al-Deen F N, Ho J, Selomulya C, et al. Superparamagnetic nano-particles for effective delivery of malaria DNA vaccine[J].Langmuir,2011,27(7):3703.
13 Hsiue G H, Chiang H Z, Wang C H, et al. Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2-oxazoline) and linear polyethylenimine[J].Bioconjugate Chemistry,2006,17(3):781.
14 Xun M M, Liu Y H, Guo Q, et al. Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors[J].European Journal of Medicinal Chemistry,2014,78:118.
15 Wang X, Niu D, Hu C, et al. Polyethyleneimine-based nanocarriers for gene delivery[J].Current Pharmaceutical Design,2015,21(42):6140.
16 Kim Y K, Zhang M, Lu J J, et al. PK11195-chitosan-graft-polyethylenimine-modified SPION as a mitochondria-targeting gene carrier[J].Journal of Drug Targeting,2016,24(5):457.
17 Chen D Z, Xue W Q, Gong J, et al. Feasibility of magnetic nanoparticles modified by PEI as gene vector[J].Journal of the Fourth Military Medical University,2008(1):13(in Chinese).
陈道桢,薛文群,龚健,等.PEI-氧化铁磁性纳米颗粒作为基因载体的实验观察[J].第四军医大学学报,2008(1):13.
18 Kim M C, Lin M M, Sohn Y, et al. Polyethyleneimine-associated polycaprolactone-Superparamagnetic iron oxide nanoparticles as a gene delivery vector[J].Journal of Biomedical Materials Research Part B Applied Biomaterials,2017,105(1):145.
19 Höbel S, Aigner A. Polyethylenimines for siRNA and miRNA deli-very in vivo[J].Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology,2013,5(5):484.
20 Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects[J].Advanced Drug Delivery Reviews,2011,63(14-15):1300.
21 Wang C M. Tumor-targeting magnetic lipoplex delivery of shRNA suppresses IGF-IR overexpression of lung cancer A549 cells in vitro and in vivo[D].Hangzhou:Zhejiang University,2012(in Chinese).
王春茂.磁性纳米颗粒联合脂质体传递shRNA特异性抑制非小细胞肺癌生长的体内外实验研究[D].杭州:浙江大学,2012.
22 McGill S L, Cuylear C L, Adolphi N L, et al. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths[J].IEEE Transactions on Nanobioscience,2009,8(1):33.
23 Hasenpusch G, Geiger J, Wagner K, et al. Magnetized aerosols comprising superparamagnetic iron oxide nanoparticles improve targeted drug and gene delivery to the lung[J].Pharmaceutical Research,2012,29(5):1308.
24 He W, He X L, Xu Z, et al.The Gram-Schmidt orthogonal data fitting method for the designing of gradient magnetic field of the unila-teral NMR[J].Journal of Chonging University,2013,36(1):86(in Chinese).
何为,何晓龙,徐征,等.单边核磁共振磁体梯度磁场设计的Gram-Schmidt正交化拟合方法[J].重庆大学学报,2013,36(1):86.
25 Ma Y J. Magnetic nanoparticles: Cellular uptake and gene transfection[D].Shanghai:Shanghai Jiao Tong University,2012(in Chinese).
马勇杰.磁性纳米粒子的细胞内吞及基因转染研究[D].上海:上海交通大学,2012.
26 Deng H X, Wei Y Q. Current status, problems and prospects in gene therapy[J].Chinese Bulletin of Life Sciences,2005(3):196(in Chinese).
邓洪新,魏于全.基因治疗的发展现状、问题和展望[J].生命科学,2005(3):196.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed