Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1241-1246    https://doi.org/10.11896/j.issn.1005-023X.2018.08.007
  材料研究 |
毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学
龚圣, 沈之川, 周新华, 陈铧耀, 徐华
仲恺农业工程学院化学化工学院,广州 510225
Sustained-release Kinetics and Preparation Process Optimization of Chlorpyrifos/Urea-formaldehyde Resin Microcapsules
GONG Sheng, SHEN Zhichuan, ZHOU Xinhua, CHEN Huayao, XU Hua
College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225
下载:  全 文 ( PDF ) ( 1733KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人们健康与环保意识的不断加强,农药施用量大、效率低、高残留等问题日益受到人们的重视,对农药进行微胶囊化,有助于有效解决当前农药使用过程中所面临的问题。采用脲醛树脂作为壁材,以十二烷基硫酸钠为乳化剂,采用原位聚合法制备毒死蜱/脲醛树脂微胶囊。研究了乳化剂种类和用量、pH值、酸化时间对微胶囊粒径及其分布的影响,并进一步探讨微胶囊的载药量、包封率及释放动力学。结果表明,采用3%(质量分数)的十二烷基硫酸钠为乳化剂,在酸化时间为90 min、酸化终点pH值为2.5、搅拌速度为1 200 r/min、芯壁比为1∶3、固化温度为60 ℃时,所制备的毒死蜱/脲醛树脂微胶囊的粒径分布窄,平均粒径约为113 μm,载药量达53%以上,包封率达62%以上。毒死蜱/脲醛树脂微胶囊的缓释性能及动力学研究结果显示,所制备的毒死蜱/脲醛树脂微胶囊的缓释效果明显,10天内能释放90%的药物,释放过程遵循Fick扩散机理。可见,制备的毒死蜱/脲醛树脂微胶囊具有较高的载药量、较好的包封率以及缓释性能,可进一步开发为新型的农药制剂,并为开发缓释农药新剂型提供理论支持与实践参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚圣
沈之川
周新华
陈铧耀
徐华
关键词:  缓释  微胶囊  毒死蜱  脲醛树脂  工艺优化  动力学    
Abstract: With people’s increasing awareness of environmental protection and health, low efficiency, large dosage and residual problems caused by widespread use of pesticides were concerned extensively. Pesticide microcapsules has shown lots of benefits to help improve the utilization rate of pesticide and achieve other aims as well. Using urea-formaldehyde resin as wall material and chlorpyrifos (CPS) as core, the chlorpyrifos/urea formaldehyde resin microcapsules (CPS/UFMCs) was fabricated by in-situ polymerization. The effects of emulsifier sorts and dosage, pH, acidification time on particle size and distribution of chlorpyrifos/urea-formaldehyde microcapsules (CPS/UFMCs) were studied, and the optimal process of CPS/UFMCs preparation was obtained. Moreover, the release performance and kinetics of the CPS/UFMCs prepared by optimal process was carried out to further investigate the loading capacity of microcapsules, encapsulation efficiency and release kinetics. The results showed that CPS/UFMCs had a narrow particle size distribution and a small average size with 3wt% sodium dodecyl sulfate(SDS) as emulsifier, the acidification time of 90 min, pH of 2.5, core/wall ratio of 1∶3 and curing temperature of 60 ℃. In addition, the average size of CPS/UFMCs prepared with the optimization process was around 113 μm. Meanwhile, the CPS/UFMCs showed excellent loading performance with more than 62% CPS encapsulated and the CPS loading rate was more than 53%. Moreover, the investigation of release performance showed the chlorpyrifos was released sustainably from the CPS/UFMCs, and more than 90% of the CPS encapsulated was released within 10 days. Subsequently, the release kinetics was analyzed following mathematical models of Korsmeyer-Peppas equation and Higuchi equation. In the kinetic study, the results showed that the release process of CPS/UFMCs followed a Fick diffusion mechanism. Generally, the prepared CPS/UFMCs shows high drug loading, efficient encapsulation and excellent release performance, and can be further developed as a new type of pesticide formulation, which can provide theoretical support and practical reference for the development of new formulations of sustained-release pesticide.
Key words:  slow release    microcapsule    chlorpyrifos    urea-formaldehyde resin    process optimization    kinetics
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ450.  
基金资助: 国家留学基金委(201508440427);广东省科技计划项目(2016A010103036;2015A020209182);广州市科技计划项目(201510010964)
通讯作者:  周新华:通信作者,男,1974年生,博士,教授,主要从事农业精细化学品研究 E-mail:xinhuazhou@163.com   
作者简介:  龚圣:男,1978年生,博士,硕士研究生导师,主要从事农业精细化学品研究 E-mail:gshengjx@163.com
引用本文:    
龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
GONG Sheng, SHEN Zhichuan, ZHOU Xinhua, CHEN Huayao, XU Hua. Sustained-release Kinetics and Preparation Process Optimization of Chlorpyrifos/Urea-formaldehyde Resin Microcapsules. Materials Reports, 2018, 32(8): 1241-1246.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.007  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1241
1 Guo D, Guo H, Zhai Y C. Application of microcapsule technology in coating[J].Journal of Materials and Metallurgy,2005,4(3):206(in Chinese) .
国栋,郭虹,翟玉春.微胶囊技术及其在涂料中的应用[J].材料与冶金学报,2005,4(3):206.
2 Ye M. Study on particles’ coating in forced rotating fluidized bed with spraying[D].Tianjin:Tianjin University,2004(in Chinese).
叶鸣.强制旋流喷雾流化床微粒包衣的实验研究[D].天津:天津大学,2004.
3 Brown E N, Kessler M R, Sottos N R, et al. In situ poly(ureafor-maldehyde) microencapsulation of dicyclopentia-dience[J].Journal of Microencapsulation,2003,20(6):719.
4 Deshpande A A, Shah N H, Rhodes C T, et al. Development of a novel controlled-release system for gastric retention[J].Pharmaceutical Research,1997,14(6):815.
5 Yuan H Z, Li G X, Yang L J, et al. Development of melamine- formaldehyde resin microcapsules withlow formaldehyde emission suited for seed treatment[J].Colloids and Surfaces B:Biointerfaces,2015,128:149.
6 Han L L, Bi L L, Zhao Z D, et al. Adavances in microcapsules pre-paration[J].Biomass Chemical Engineering,2011(3):41(in Chinese).
韩路路,毕良武,赵振东,等.微胶囊的制备方法研究进展[J].生物质化学工程,2011(3):41.
7 Simona C, Veronica A, Pellegrino M,et al. P Urea-formaldehyde microcapsules containing an epoxy resin: Influence of reaction parameters on the encapsulation yield[J].Macromolecules Symposia,2006,234(1):184.
8 Zhang Y, Rocherort D. Characterisation and applications of microcapsules obtained by interfacial polycon-densation[J].Journal of Microencapsulation,2012,29(7):636.
9 Paiva N T, Henriques A, Cruz P, et al. Production of melamine fortified urea-formaldehyde resins with low formaldehyde emission[J].Journal of Applied Polymer Science,2012,124(3):2311.
10 Zhang Y, Rochefort D. Comparison of emulsion and vibration nozzle methods for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethy-leneimine)[J].Journal of Microencapsulation,2010,27(8):703.
11 Siva T, Sathiyanarayanan S. Self healing coatings containing dual active agentloaded urea formaldehyde (UF) microcapsules[J].Progress in Organic Coatings,2015,82:57.
12 Yang D, Wang N, Yan X, et al. Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings[J].Colloids and Surfaces B:Biointerfaces,2014,114(2):241.
13 Lin Y S, Zhou X H, Zhou H J, et al. Preparation and low-release performance of chlorpyrifos/feather keratin/sodium alginate microspheres[J].Agrochemicals,2014,53(12):892(in Chinese).
林粤顺,周新华,周红军,等.毒死蜱/羽毛蛋白/海藻酸钠复合微球的制备及其缓释性能[J].农药,2014,53(12):892.
14 Wang L. Preparation of microcapsules by in-situ polymerization of urea-formaldehyde[D].Qingdao:Qingdao University of Science & Technology,2014(in Chinese).
王璐.原位聚合法制备脲醛树脂微囊的处方工艺和筛选[D].青岛:青岛科技大学,2014.
15 Maria P M, Romina O, Vera A, et al. Effect of the preparation method on the structure of linseed oil-filledpoly(urea- formaldehyde) microcapsules[J].Progress in Organic Coatings,2016,97:194.
16 Yoshizawa H, Kamio E, Hirabayashi N, et al. Membrane formation mechanism of cross-linked polyurea microcapsules by phase separation method[J].Journal of Microencapsulation,2004,21(3):241.
17 Yoshizawa H, Kamio E, Kobayashi E, et al. Investigation of alternative compounds to poly(E-MA) as a polymeric surfactant for pre-paration of microcapsules by phase separation method[J].Journal of Microencapsulation,2007,24(40):349.
18 Kage H, Yada N, Kunimasa M, et al. Membrane thickness of microcpasules generated by complex coacervation method[J].Kagaku Kogaku Ronbun,1996,22(2):342.
19 Kage H, Yada N, Kunimasa M, et al. Microencapsulation of mono-dispersed droplets by complex coacervation method and membrane thickness of generated capsules[J].Kagaku Kogaku Ronbun,1997,23(5):365.
20 Despres A,Pizzi A. Colloidal aggregation of aminoplastic polycondensation resins: Urea-formaldehyde versus melamine-formaldehyde andmelamine-urea-formaldehyde resins[J].Journal of Applied Polymer Science,2006,100(2):1406.
21 Fan C J, Zhou X D. Influence of operating conditions on the surface morphology of microcapsules prepared by in situ polymerization[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2010,363:49.
22 Behzadnasab M, Esfandeh M, Mirabedini S M, et al. Preparation and characterization of linseed oil-filled urea-formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2014,457:16.
23 Zhu L, Long X Y, Wang Z H, et al. Microencapsulation, characte-rization and toxicity evaluation of chlorpyrifos[J].Journal of South China Agricultural University,2010,21(2):40(in Chinese).
朱玲,龙小燕,王正辉,等.毒死蜱的聚脲微胶囊化、表征及毒力评价[J].华南农业大学学报,2010,21(2):40.
24 Korsmeyer R W, Gurny R, Peppas N A, et al. Mechanisms of so-lute release from porous hydrophilic polymers[J].International Journal of Phamaceutics,1983,15(1):25.
25 Lin Y S, Zhou H J, Zhou X H, et al. Preparation and properties of pH-responsive slow-released system of PAA/chlorpyrifos/amino functionalized mesoporous silica[J].CIESC Journal,2016,67(10):4500(in Chinese).
林粤顺,周红军,周新华,等.pH响应性PAA/毒死蜱/氨基化介孔硅缓释体系的制备与性能[J].化工学报,2016,67(10):4500.
26 Dash S, Murthyp N, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems[J].Acta Poloniae Pharmaceutica-Drug Research,2010,67(3):217.
27 Siepmann J,Siepmann F. Mathematical modeling of drug delivery[J].International Journal of Pharmaceutics,2008,364(2):328.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[6] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[7] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[8] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[9] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[10] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[11] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[12] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[13] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[14] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[15] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed