Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22050296-14    https://doi.org/10.11896/cldb.22050296
  无机非金属及其复合材料 |
钢筋混凝土环境中负载型阻锈剂的研究进展
徐宁1,2, 杨恒1,2,*, 熊传胜3, 崔征1,2,4, 蒋鹏1,2, 刘璨1,2
1 南京水利科学研究院,南京 210029
2 水文水资源与水利工程科学国家重点实验室,南京 210029
3 青岛理工大学土木工程学院,山东 青岛 266033
4 南京瑞迪高新技术有限公司,南京 210024
Research Progress of Carrier-loaded Corrosion Inhibitor in Reinforced-Concrete Environments
XU Ning1,2, YANG Heng1,2,*, XIONG Chuansheng3, CUI Zheng1,2,4, JIANG Peng1,2, LIU Can1,2
1 Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, China
3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
4 Nanjing R&D Hi-Tech Co., Ltd., Nanjing 210024, China
下载:  全 文 ( PDF ) ( 17222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 阻锈剂技术是抑制混凝土中钢筋锈蚀的重要途径,但传统阻锈剂的应用仍然面临功能单一、与混凝土的兼容性不佳、环保性和有效性难以兼顾等问题。将阻锈剂装载入载体中,以载体负载阻锈剂(Carrier-loaded corrosion inhibitor,CLCI)的形式将阻锈剂“间接”掺入混凝土,能够在避免阻锈剂原有缺陷的基础上,发挥载体的特有功能。本文围绕CLCI的离子固化、缓释效应、智能响应、pH自免疫系统、载体吸附效应等功能机制,结合CLCI对水泥基材料性能的影响,系统综述了CLCI的研究进展。最后,对其在混凝土中的研究和应用进行了展望,并提出了需要解决的问题,以期为CLCI在混凝土工程中的应用提供更多可能性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐宁
杨恒
熊传胜
崔征
蒋鹏
刘璨
关键词:  负载型阻锈剂  钢筋混凝土腐蚀  智能响应  缓释  力学性能    
Abstract: Corrosion inhibitors provide an important way of protecting concrete steel bars from corrosion, and they have always been a research hotspot in the field of corrosion inhibition. However, the application of corrosion inhibitors still faces several problems, e.g., single performance, poor compatibility with cement-based materials, and difficulty in balancing environmental protection and effectiveness. A corrosion inhibitor is ‘indirectly’ mixed into concrete in the form of a carrier-loaded corrosion inhibitor (CLCI), which not only avoids the original defects of corrosion inhibitors, but it also plays the unique function of the carrier. In this paper, we systematically summarize the research progress of CLCIs in reinforced-concrete environments from the perspectives of the action mechanism of ion curing, slow-release, intelligent response, the pH autoimmune system, and the carrier adsorption effect and its influence on the properties of cement-based materials. Finally, research and application prospects of CLCI in concrete are detailed, and the problems to be solved are put forward to illuminate more possibilities for the application of CLCI in concrete engineering.
Key words:  carrier-loaded corrosion inhibitor    corrosion of reinforced-concrete    intelligent response    slow-release    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528  
基金资助: 江苏省自然科学基金(BK20230119);国家自然科学基金(51709253);中央级公益性科研院所基本科研业务费专项项目(Y422004)
通讯作者:  *杨恒,南京水利科学研究院材料结构研究所工程师,博士毕业于河海大学。主要从事钢筋混凝土腐蚀、负载型阻锈剂方面的研究,在Construction and Building Materials、Materials Letters、Progress in Organic Coatings等期刊发表SCI论文10余篇,主持中央级公益性科研院所基本科研业务费专项项目1项,参与国家杰出青年科学基金、国家自然科学基金面上项目及青年项目等在内的国家级科研项目3项。hengyang@nhri.cn   
作者简介:  徐宁,南京水利科学研究院材料结构研究所高级工程师,博士毕业于河海大学。江苏省“333高层次人才培养工程”中青年学术技术带头人。主持或部分主持包括国家重点研发项目、国家自然科学基金、科技支撑计划、交通部西部建设项目等在内的国家和省部级科研项目8项,负责完成10余项重大工程科研项目。主要从事钢筋阻锈剂、高性能混凝土、电化学修复技术等方面的研究。主/参编行业规范3部,发表论文20余篇,其中SCI/EI收录10余篇。
引用本文:    
徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
XU Ning, YANG Heng, XIONG Chuansheng, CUI Zheng, JIANG Peng, LIU Can. Research Progress of Carrier-loaded Corrosion Inhibitor in Reinforced-Concrete Environments. Materials Reports, 2024, 38(2): 22050296-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050296  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22050296
1 Etteyeb N, Dhouibi L, Takenouti H, et al. Cement and Concrete Compo-sites, 2016, 65(1), 94.
2 Etteyeb N, Dhouibi L, Takenouti H, et al. Cement and Concrete Compo-sites, 2015, 55(1), 241.
3 Djerbi A, Bonnet S, Khelidj A, et al. Cement and Concrete Research, 2008, 38(6), 877.
4 Song H W, Li C H, An K Y. Cement and Concrete Composites, 2008, 30(2), 113.
5 Vidal T, Castel A, Francois R. Cement and Concrete Research, 2007, 37(11), 1551.
6 Garces P, Saura P, Mendez A, et al. Corrosion Science, 2008, 50(2), 498.
7 Du R G. The effects of different inorganic corrosion inhibitors on the reinforcing steel in concrete. Ph. D. Thesis, Xiamen University, China, 2001(in Chinese).
杜归荣. 若干无机缓蚀剂对混凝土中钢筋的阻锈作用. 博士学位论文, 厦门大学, 2001.
8 Ormellese M, Berra M, Bolzoni F, et al. Cement and Concrete Research, 2006, 36(3), 536.
9 Jiang S B, Gao S, Jiang L H, et al. Cement and Concrete Composites, 2018, 91(8), 87.
10 Tian H W. Study on anti-corrosion performance and mechanism of environment-friendly reinforcing bar embroidery inhibitor. Ph. D. Thesis, Institute of Ocea-nology of the Chinese Academy of Sciences, China, 2012 (in Chinese).
田惠文. 环境友好型钢筋阻绣剂的防腐性能和机理研究. 博士学位论文, 中国科学院海洋研究所, 2012.
11 Xu J X, Wei J F, Ma G X, et al. Corrosion Science, 2020, 176(11), 108940.
12 Liu Y Q, Song Z J, Wang W Y, et al. Journal of Cleaner Production, 2019, 214(3), 298.
13 Cao Y H, Dong S G, Zheng D J, et al. Corrosion Science, 2017, 26(9), 166.
14 Zuo J D, Li H B, Zhan J, et al. Cement and Concrete Composites, 2020, 105(1), 103438.
15 Yang H, Li W H, Liu X Y, et al. Construction and Building Materials, 2019, 225(11), 90.
16 Zuo J D, Zhan J, Dong B Q, et al. Construction and Building Materials, 2017, 155(11), 323.
17 Yang H, Xiong C S, Liu X Y, et al. Construction and Building Mate-rials, 2021, 307, 124991.
18 Wang Y Y, Hu J, Ma Y W, et al. Construction and Building Materials, 2022, 317, 125946.
19 Da B, Chen Y, Yu H F, et al. Journal of Cleaner Production, 2022, 339, 130572.
20 Víctor O, Matías J, Alberto E. Langmuir, 2014, 30(7), 8408.
21 Anja, Olafsen, Sjstad, et al. European Journal of Inorganic Chemistry, 2015, 2015(10), 1775.
22 Suraj, Shiv, Charan, et al. The Journal of Physical Chemistry C, 2015, 119(11), 27695.
23 Taviot G C, Prevot V, Forano C, et al. Advanced Functional Materials, 2018, 27(7), 1703861.
24 Pang H, Zhao M, Zhao Q, et al. Nanoscale, 2017, 9(11), 15206.
25 Zubair M, Daud M, Mckay G, et al. Applied Clay Science, 2017, 143(7), 279.
26 Luo Y P. Synthesis and application af self-healing microcapsules. Ph. D. Thesis, South China University of Technology, China, 2011 (in Chinese).
罗永平. 自修复微胶囊的合成与应用研究. 博士学位论文, 华南理工大学, 2011.
27 Yow H N, Routh A F. Soft Matter, 2006, 2(11), 940.
28 Yu Z G. Research and application of corroded reinforced concrete structure and rust inhibitor. Ph. D. Thesis, Hunan University, China, 2004 (in Chinese).
余志钢. 锈蚀钢筋混凝土结构性能和钢筋阻锈剂性能的研究及应用. 博士学位论文, 湖南大学, 2004.
29 Maesen T. Cheminform, 2001, 137(12), 1.
30 Karapinar N. Journal of Hazardous Materials, 2009, 170(10), 1186.
31 Wu Z C, An Y, Wang Z W, et al. Journal of Hazardous Materials, 2008, 156(8), 317.
32 Layla E, Benedicte L, Habiba N, et al. Journal of Hazardous Materials, 2019, 364(2), 206.
33 Kovalevskiy N S, Lyulyukin M N, Selishchev D S, et al. Journal of Ha-zardous Materials, 2018, 358(9), 302.
34 Ferrer E L, Rollon A P, Mendoza H D, et al. Microporous and Mesoporous Materials, 2014, 188(4), 8.
35 Xu W T, Wei J X, Yang Z G, et al. Construction and Building Materials, 2020, 250(7), 118861.
36 Yang Z G. Preparation of loaded imidazoline laurate rust inhibitor and its protective performance on reinforced cement-based materials. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
杨振国. 负载型月桂酸咪唑啉阻锈剂的制备及其对钢筋增强水泥基材料防护性能的研究. 博士学位论文, 华南理工大学, 2018.
37 Arumugam R, Ramamurthy K. Magazine of Concrete Research, 1996, 48(1), 141.
38 Wang X Z. Study on engineering geological properties of coral reefs and feasibility of large project construction on nansha islands. Ph. D. Thesis, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China, 2008 (in Chinese).
王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究. 博士学位论文, 中国科学院武汉岩土力学研究所, 2008.
39 Da B, Yu H F, Ma H, et al. Construction and Building Materials, 2016, 123(10), 47.
40 Wu M X, Yang Y W. Advanced Materials, 2017, 29(23), 1606134.
41 Li S X, Wang K K, Shi Y J, et al. Advanced Functional Materials, 2016, 26, 2715.
42 Cao J, Guo C, Guo X, et al. Journal of Molecular Liquids, 2020, 311, 113277.
43 Zhou W Q, Wang L, Li F, et al. Advanced Functional Materials, 2017, 27(6), 1605465.
44 Jian R K, Lin X B, Liu Z Q, et al. Composites Part B, 2020, 200(11), 108349.
45 Zuo J D, Wu B, Luo C Y, et al. Corrosion Science, 2019, 152(5), 120.
46 Yang Z X, Fischer H, Polder R. Cement and Concrete Composites, 2015, 58(4), 105.
47 Cao Y H, Zheng D J, Luo J S, et al. Journal of the Electrochemical Society, 2019, 166(11), C3106.
48 Xu J X, Song Y B, Zhao Y H, et al. Applied Clay Science, 2018, 163(10), 129.
49 Xu J X, Tan Q P, Mei Y J. Corrosion Science, 2020, 163(2), 108221.
50 Ke X Y, Bernal S A, Provis J L. Cement and Concrete Research, 2017, 100(10), 1.
51 Wei J F, Xu J X, Mei Y J, et al. Applied Clay Science, 2020, 187(3), 105495.
52 Shui Z H, Chen Y X, Guo W. Construction and Building Materials, 2015, 93(9), 1051.
53 Yang Z X, Fischer H, Polder R. Cement and Concrete Composites, 2014, 47(3), 87.
54 Tian Y W, Dong C F, Wang G, et al. Materials Letters, 2019, 236(2), 517.
55 Cao Y H, Zheng D J, Luo J S, et al. Journal of the Electrochemical Society, 2019, 166(1), C617.
56 Yang Z X, Polder R, Mol J, et al. Cement and Concrete Research, 2017, 100(10), 186.
57 Hu Y R, Li H H, Wang Q, et al. Construction and Building Materials, 2019, 229(12), 116921.
58 Yoon S, Moon J, Bae S, et al. Materials Chemistry and Physics, 2014, 145(3), 376.
59 Wu B, Zuo J D, Dong B Q, et al. Applied Clay Science, 2019, 180(11), 105181.
60 Ryu H S, Singh J K, Lee H S, et al. Construction and Building Materials, 2017, 133(2), 387.
61 Gu L, Ding J H, Yu H B. Progress in Chemistry, 2016, 28(5), 737 (in Chinese).
顾林, 丁纪恒, 余海斌. 化学进展, 2016, 28(5), 737.
62 Chen M Z, Wu F, Yu L W, et al. Crystengcomm, 2019, 21(9), 6790.
63 Xu J X, Song Y B, Tan Q P, et al. Journal of Materials Science, 2017, 52(10), 5908.
64 Javadian S, Yousefi A, Neshati J. Applied Surface Science, 2013, 285(12), 674.
65 Tian H W, Li W H, Cao W K, et al. Corrosion Science, 2013, 73(8), 281.
66 Tian H W, Li W H, Hou B R. Corrosion Science, 2011, 53(10), 3435.
67 Liu A, Tian H W, Ju X D, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104(9), 330.
68 Chen Z H, Yang W Z, Yin X S, et al. Progress in Organic Coatings, 2020, 146(9), 105750.
69 Jiang Y Q, Li J, Juan Y F, et al. Journal of Alloys and Compounds, 2019, 775, 1.
70 Anstice D J, Page C L, Page M M. Cement and Concrete Research, 2005, 35(2), 377.
71 Michel A, Nygaard P V, Geiker M R. Corrosion Science, 2013, 72(7), 26.
72 Kumar M P, Paulo J. M. M. Concrete:Microstructure, Properties, and Materials. China Architecture & Building Press, China, 2016, pp. 130 (in Chinese).
库马·梅塔, 保罗J. M. 蒙特罗. 混凝土微观结构、性能和材料, 中国建筑工业出版社, 2016, pp. 130.
73 Xu N, Jiang L H, Zhou H M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2021, 36 (6), 804.
74 Goh K H, Lim T T. Journal of Hazardous Materials, 2010, 180(1), 401.
75 Ping D, Chen W, Ma J, et al. Construction and Building Materials, 2013, 48(11), 601.
76 Duan Ping. Research on modification mechanism and the application of layered double hydroxides for durability of concrete. Ph. D. Thesis, Wuhan University of Technology, China, 2014 (in Chinese).
段平. 层状双氢氧化物改善混凝土耐久性能的机理及其应用研究. 博士学位论文, 武汉理工大学, 2014.
77 Geng H N, Duan P, Chen W, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(3), 97.
78 Shui Z H, Yu R, Chen Y X, et al. Construction and Building Materials, 2018, 176(7), 228.
79 Parker L M, Milestone N B, Newman R H. Industrial & Engineering Chemistry Research, 1995, 34(4), 1196.
80 Ambrogi V, Fardella G, Grandolini G, et al. AAPS PharmSciTech, 2002, 3(3), 77.
81 Qi F L, Li S P, Zhang X Q. Acta Chimica Sinica, 2012, 70(20), 2162 (in Chinese).
齐凤林, 李淑萍, 张晓晴. 化学学报, 2012, 70(20), 2162.
82 Shkirskiy V, Keil P, Hintze-Bruening H, et al. ACS Applied Materials and Interfaces, 2015, 7(10), 25180.
83 Da B, Yu H F, Ma H Y, et al. Journal of Chinese Society for Corrosion and Protection, 2019, 39(4), 152 (in Chinese).
达波, 余红发, 麻海燕, 等. 中国腐蚀与防护学报, 2019, 39(4), 152.
84 Rojas R, Palena M C, Jimenez-Kairuz A F, et al. Applied Clay Science, 2012, 62(7), 15.
85 Tian H W, Li W H, Liu A, et al. Corrosion Science, 2018, 131(2), 1.
86 Zhu Y Y. Design and preparation of pH-sensitive organic micro-nano anticorrosion capsules and investigation on the related inhibition mechanism. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
朱洋洋. pH敏感型有机微纳阻锈胶囊的设计制备及阻锈机理的研究. 博士学位论文, 华南理工大学, 2018.
87 Zhu Y Y, Ma Y W, Yu Q J, et al. Materials and Design, 2017, 119(4), 254.
88 Hu J, Zhu Y Y, Hang J Z, et al. Construction and Building Materials, 2021, 267(1), 121011.
89 Dong B Q, Wang Y S, Fang G H, et al. Cement and Concrete Compo-sites, 2015, 56(2), 46.
90 Gomes C, Mir Z, Rui S, et al. Materials, 2020, 13(7), 1769.
91 Song Z J, Liu Y Q, Jiang L H, et al. Construction and Building Materials, 2021, 311, 125331.
92 Zhang Q, Feng P, Wang H C, et al. Materials Reports, 2022, 36(4), 1 (in Chinese).
张琪, 冯攀, 王浩川, 等. 材料导报, 2022, 36(4), 1.
93 Guo L S, Zhang Q Y, Han S X. Journal of Agricultural Safety and Health, 2002, 8(12), 385.
94 Hunter A J, Drinkwater B W, Wilcox P D. Ndt and E International, 2010, 43(3), 78.
95 Gromov A I, Osipov L, Yurkin Y Y, et al. Biomedical Engineering, 2015, 49(7), 120.
96 Zhang P, Zhang G G, Wang W. Bioresource Technology, 2007, 98(1), 207.
97 Ichikawa T, Natsu W. Procedia Cirp, 2013, 6(7), 326.
98 Sutcliffe M, Weston M, Dutton B, et al. Ndt & E International, 2012, 51(10), 16.
99 Xu N, Song Z J, Guo M Z, et al. Cement and Concrete Composites, 2021, 118(6), 103951.
100 Wang Y S, Fang G H, Ding W J, et al. Scientific Reports, 2015, 5(12), 18484.
101 Wang Y S, Ding W J, Fang G H, et al. Construction and Building Materials, 2016, 125(10), 742.
102 Liu A, Tian H W, Li W H, et al. Applied Surface Science, 2018, 462(12), 175.
103 Liu Ang. Construction and mechanism of hydrotalcite-based functional corrosion inhibitor-coating protection system. Ph. D. Thesis, Institute of Oceanology, Chinese Academy of Sciences, China, 2020 (in Chinese).
刘昂. 水滑石基功能化缓蚀-涂层防护体系构建和机制研究. 博士学位论文, 中国科学院海洋研究所, 2020.
104 Zhu Y X, Song G L, Wu P P. Journal of Magnesium and Alloys, DOI: 10.1016/j.jma.2021.11.019.
105 Dou Z, Zhang Y, Shulha T. Surface and Coatings Technology, 2022, 439(6), 128414.
106 Zhan J. Preparation of polymer/rust inhibitor microcapsules by centrifugal-coating method and characterization of rust resistance. Master’s Thesis, Shenzhen University, China, 2017 (in Chinese).
詹嘉. 离心-包衣法制备聚合物/阻锈剂微胶囊及其阻锈性能的研究. 硕士学位论文, 深圳大学, 2017.
107 Yang Z, Fischer H, Cerezo J, et al. Construction and Building Materials, 2013, 47, 1436.
108 Gu Y. Modifying cementitious materials with core-shell nano-SiO2. Ph. D. Thesis, Southeast University, China, 2017 (in Chinese).
顾越. 核壳纳米SiO2改性水泥基材料性能研究. 博士学位论文, 东南大学, 2017.
109 Land G, Stephan D. Cement and Concrete Composites, 2015, 57(3), 64.
110 Booshehrian A, Hosseini P. Magazine of Concrete Research, 2011, 2(1), 167.
111 Makar J M, Chan G W. Journal of the American Ceramic Society, 2010, 92(6), 1303.
112 Bo Y L, Kurtis K E. Journal of the American Ceramic Society, 2010, 93(10), 3399.
113 Wu Y Y, Duan P, Yan C J. Applied Clay Science, 2018, 158(6), 123.
114 Guan X M, Li H Y, Luo S Q, et al. Cement and Concrete Composites, 2016, 70(7), 15.
115 Ke X Y, Bernal S A, Provis J. Green Materials, 2018, 10(7), 1.
116 Cao L, Guo J T, Tian J H, et al. Construction and Building Materials, 2018, 184(9), 203.
117 Liu C S, Wei S. Journal of Materials Science:Materials in Medicine, 1997, 8(12), 803.
118 Yang H, Xiong C S, Liu A, et al. Materials Letters, 2021, 300(10), 130228.
119 Zhutovsky S, Kovler K, Bentur A. Cement and Concrete Research, 2011, 41(9), 981.
120 Ghourchian S, Wyrzykowski M, Lura P, et al. Construction and Buil-ding Materials, 2013, 40(3), 135.
121 Jensen O M, Hansen P F. Cement and Concrete Research, 2002, 32(6), 973.
122 Parveen S, Rana S, Fangueiro R, et al. Cement and Concrete Research, 2015, 73(7), 215.
123 Li H Y, Xu C, Guan X M, Zhang H B, et al. Advances in Cement Research, 2018, 32(6), 1.
124 Qu Z Y, Yu Q L, Brouwers H J H. Cement and Concrete Research, 2018, 105(3), 81.
125 Liu T, Chen Y, Yu Q, et al. Construction and Building Materials, 2020, 250, 118865.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed