Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080166-6    https://doi.org/10.11896/cldb.22080166
  高分子与聚合物基复合材料 |
甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究
赵清平, 亢淑梅*, 邹方正, 朱忠博, 李鹏宇
辽宁科技大学材料与冶金学院,沈阳 114051
Corrosion Resistance of Glycerol Microcapsules Coated with Silane Epoxy Blend Coating
ZHAO Qingping, KANG Shumei*, ZOU Fangzheng, ZHU Zhongbo, LI Pengyu
School of Materials and Metallurgy, University of Science and Technology Liaoning, Shenyang 114051, China
下载:  全 文 ( PDF ) ( 8858KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高金属基体的耐蚀性,采用溶剂蒸发法制备了水包油乳液体系的聚砜包覆甘油的微胶囊,并在基体表面制备了含有微胶囊的硅烷环氧共混涂层。通过扫描电镜、红外、热重、电化学分析对微胶囊和含有微胶囊的环氧硅烷共混涂层的形貌结构、热稳定性、耐蚀性等进行研究。结果表明:以聚砜为壁材包裹的微胶囊的平均粒径为150 μm,且聚砜对甘油的包封效率为12%,胶囊的热分解温度为320 ℃。在3.5%(质量分数,下同) NaCl 溶液浸泡下,当硅烷的添加量为3%时,硅烷的水解缩合弥补了环氧涂层的缺陷,使硅烷环氧共混涂层的阻抗模值提高到8×106 Ω·cm-2;此外,添加微胶囊的硅烷环氧涂层由于微胶囊中缓释剂的释放吸附在金属基体表面,延缓了金属腐蚀的速度,阻抗模值提高到2×107 Ω·cm-2,耐蚀性增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵清平
亢淑梅
邹方正
朱忠博
李鹏宇
关键词:  甘油  聚砜微胶囊  自修复涂层  耐蚀性    
Abstract: In order to improve the corrosion resistance of matrix, polysulfone coated glycerol microcapsules in oil in water lotion system were prepared through solvent evaporation, and silane epoxy blend coating containing microcapsules were prepared on the surface. The morphology, thermal stability and corrosion resistance of the microcapsules and epoxy silane blend coating containing microcapsules were studied through SEM, IR, TG and electrochemical analysis. The results showed that the microcapsules with glycerol as core material and polysulfone as wall material had an average particle size of 150 μm. The encapsulation efficiency was 12% and the thermal decomposition temperature was 320 ℃. When the addition of silane was 3% in 3.5wt% NaCl solution, the defect of epoxy coating was compensated by hydrolysis condensation of silane, and the impedance modulus of silane epoxy blend coating increased to 8×106 Ω·cm-2. In addition, the silane epoxy coating with microcapsules was adsorbed on the surface of the metal matrix due to the release of the slow-release agent in the microcapsules, which delayed the corrosion of the metal and increased the impedance modulus to 2×107 Ω· cm-2, and the corrosion resistance was enhanced.
Key words:  glycerol    polysulfone microcapsule    self-healing coating    corrosion resistance
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TG174  
基金资助: 国家自然科学基金(52074149);国家自然科学基金联合项目(U1860112);辽宁省自然科学基金(2022-MS-355)
通讯作者:  亢淑梅,辽宁科技大学材料与冶金学院副教授、硕士研究生导师。2002年西安建筑科技大学冶金工程学院化学工程与工艺专业本科毕业,2005年西安建筑科技大学冶金物理化学专业硕士毕业,2012年辽宁科技大学冶金工程专业博士毕业。目前主要从事金属及金属基复合材料腐蚀与防护、废旧电池回收的研究工作。发表论文20余篇,参与国家自然基金项目1项。kangshumei_911@163.com   
作者简介:  赵清平,2020年6月于辽宁科技大学获得理学学士学位。现为辽宁科技大学材料与冶金学院硕士研究生,在亢淑梅教授的指导下进行研究。目前主要研究领域为材料腐蚀与防护。
引用本文:    
赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
ZHAO Qingping, KANG Shumei, ZOU Fangzheng, ZHU Zhongbo, LI Pengyu. Corrosion Resistance of Glycerol Microcapsules Coated with Silane Epoxy Blend Coating. Materials Reports, 2024, 38(7): 22080166-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080166  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080166
1 Chen H D, Yu Z X, Yang G C, et al. Surface & Coatings Technology, 2022, 446, 128768.
2 Ou B L, Wang Y W, Duan J, et al. China Surface Engineering, DOI: 10. 11933/j. issn. 1007-9289. 20210427001(in Chinese).
欧宝立, 汪雨微, 段俊, 等. 中国表面工程, DOI: 10. 11933/j. issn. 1007-9289. 20210427001.
3 Dharanendra R A, Prakash M S, Sreenivasa S, et al. Bulletin of Mate-rials Science, 2022, 45(3), 149.
4 Yang S H, Fang H, Li H, et al. Progress in Organic Coatings, 2022, 170, 106967.
5 Tomić N Z, Mustapha A N, AlMheiri M, et al. Progress in Organic Coatings, 2022, 172, 107070.
6 Ge Q Q, Lu Z Z, Liang Y, et al. China Surface Engineering, DOI: 10. 11933/j. issn. 1007-9289. 20210429002(in Chinese).
葛倩倩, 鲁浈浈, 梁杨, 等. 中国表面工程, DOI: 10. 11933/j. issn. 1007-9289. 20210429002.
7 Yang B B, Dong J Y, Bian H F, et al. Nanomaterials, 2022, 12(14), 2406.
8 Xie C, Jia Y, Xue M S, et al. Polymer Materials Science and Enginee-ring, 2022, 38(5), 171.
谢婵, 贾宇, 薛名山, 等. 高分子材料科学与工程, 2022, 38(5), 171.
9 Wang J K, Huang Y, Ma L W, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129855.
10 Bi Z X, Gao F J, Liu M, et al. Chemical Engineering Journal, 2022, 450(P3), 138250.
11 Han Y, Yan X X, Tao Y. Coatings, 2022, 12(7), 989.
12 Zhao Q P, Kang S M, Zou F Z, et al. ACS Omega, 2022, 7(25), 21868.
13 Han R, He H F, Liu X, et al. Journal of Colloid and Interface Science, 2022, 616, 605.
14 Khalaj A A, Ebrahimi M, Mohsen M. Pigment & Resin Technology, 2017, 46(4), 318.
15 Habib S, Khan A, Nawaz M, et al. Polymers, 2019, 11(9), 1519.
16 Fadil M, Chauhan D S, Quraishi M A. Russian Journal of Applied Che-mistry, 2018, 91(10), 1721.
17 Mahmoudian M, Nozad E, Kochameshki M G, et al. Progress in Organic Coatings, 2018, 120, 167.
18 Shahabudin N, Yahya R, Gan S N. Polymers, 2016, 8(4), 125.
19 Neto A G C, Pellanda A C, Jorge A R D, et al. Progress in Organic Coatings, 2020, 147, 105874.
20 Sun J Y, Li W, Li N, et al. Progress in Organic Coatings, 2022, 164, 106689.
21 Khorasani S N, Ataei S, Neisiany R E. Progress in Organic Coatings, 2017, 111, 99.
22 Marathe R, Tatiya P, Chaudhari A, et al. Industrial Crops and Products, 2015, 77, 239.
23 Qiu L Q, Zhang M, Adhikari B, et al. Food Hydrocolloids, 2022, 124, 107366.
24 Patil D M, Phalak G A, Mhaske S T. Iranian Polymer Journal, 2018, 27(10), 709.
25 Fedel M, Callone E, Fabbian B, et al. Applied Surface Science, 2017, 414, 82.
26 Qian B, Zheng Z, Michailids M, et al. ACS Applied Materials Interfaces, 2019, 11, 10283.
27 Xie Z H, Li D, Skeete Z, et al. ACS Applied Materials Interfaces, 2017, 9, 36247.
28 Ubaid F, Radwan B A, Naeem N, et al. Surface & Coatings Technology, 2019, 372, 121.
29 Zhou Y, Chen G, Yan S, et al. Progress in Organic Coatings, 2022, 172, 107098.
30 Yan D, Liu X, Chen Z, et al. Chemical Engineering Journal, 2023, 451(P4), 138995.
31 Jin Z, Liu H, Wang Z, et al. Progress in Organic Coatings, 2022, 172, 107121.
32 Yin M H. Study based on preparation and properties of silane composite corrosion resistant films on magnesium alloy surface. Master’s Thesis, Changzhou University, China, 2021 (in Chinese).
殷敏豪. 基于镁合金表面硅烷复合耐蚀膜的制备及性能研究. 硕士学位论文, 常州大学, 2021.
33 Ghafarzadeh M, Kharaziha M, Atapour M. Progress in Organic Coatings, 2021, 161, 106495.
[1] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[2] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[3] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[4] 胥聪敏, 李雪丽, 朱文胜, 朱世东, 杨兴, 高豪然, 孙姝雯. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 23090099-6.
[5] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[6] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
[7] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[8] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[9] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[10] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[11] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[12] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[13] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[14] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[15] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed