Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23090099-6    https://doi.org/10.11896/cldb.23090099
  金属与金属基复合材料 |
D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响
胥聪敏1,*, 李雪丽1, 朱文胜2, 朱世东1, 杨兴1, 高豪然1, 孙姝雯1
1 西安石油大学材料科学与工程学院,西安 710065
2 中海油常州涂料化工研究院有限公司,江苏 苏州 213000
Effect of D-amino Acid Enhanced Bactericide on Corrosion Behavior of Three Metal Materials
XU Congmin1,*, LI Xueli1, ZHU Wensheng2, ZHU Shidong1, YANG Xing1, GAO Haoran1, SUN Shuwen1
1 School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
2 CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd., Suzhou 213000, Jiangsu, China
下载:  全 文 ( PDF ) ( 4341KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用生物培养技术、杀菌过程评价、失重实验、电化学测试、表面分析等测试手段,研究了D-氨基酸增强型杀菌剂对45#碳钢、316L不锈钢和H62黄铜在硫酸盐还原菌(SRB)+铁氧化菌(IOB)混合菌中的耐蚀行为及机理的影响。结果表明,无杀菌剂时三种金属的年腐蚀深度排序为45#碳钢(0.104 2 mm/a)>H62黄铜(0.045 6 mm/a)>316L不锈钢(0.007 3 mm/a)。混合菌中的SRB和IOB具有协同作用,进而加速了金属材料腐蚀。加入杀菌剂后,混合菌中SRB和IOB的杀菌率分别超过了99%和90%,三种金属的极化曲线均向左移,icorr均有不同程度的下降,腐蚀速率均显著降低,且点蚀坑的深度和数量明显减少;微生物代谢产物中的P、S含量显著减少,说明活菌数量急剧降低。无论有/无杀菌剂条件下,316L不锈钢因表面易生成氧化铬钝化膜而使其耐蚀性能最好,H62黄铜因Cu2+有杀菌作用而使其耐蚀性较好。杀菌剂中的四羟甲基硫酸磷(THPS)可改变细胞酶和蛋白质的性质,导致细菌死亡,且D-氨基酸可分解金属表面的生物膜,使细菌由难杀灭的固着态转变为易杀灭的浮游态,提高了杀菌效果,同时避免了高浓度的胞外聚合物(EPS)形成,从而降低了金属的腐蚀速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胥聪敏
李雪丽
朱文胜
朱世东
杨兴
高豪然
孙姝雯
关键词:  D-氨基酸  杀菌剂  混合菌  生物膜  金属耐蚀性    
Abstract: The effects of D-amino acid enhanced compound bactericide on corrosion resistance behavior and mechanism of 45# carbon steel, 316L stainless steel and H62 brass in sulfate reducing bacteria (SRB) + iron oxidizing bacteria (IOB) were studied by biological culture technology, bactericidal process evaluation, weight loss experiment, electrochemical test and surface analysis. The results showed that the corrosion depth of different metals a year without bactericide was as follows, 45# carbon steel (0.104 2 mm/a) >H62 brass (0.045 6 mm/a) > 316L stainless steel (0.007 3 mm/a). Because the SRB and IOB in the mixed bacteria have a synergistic effect to accelerate the corrosion of metal mate-rials. After adding the bactericide, the bactericidal rate of SRB and IOB in the mixed bacteria exceeded 99% and 90%, respectively, the polarization curves of the three metals all shifted to the left, the icorrdecreased in a varying degree, the corrosion rate reduced significantly, and the depth and number of pitting pits decreased significantly. Moreover, the content of P and S in microbial metabolites decreased significantly, it indicated that the number of viable bacteria decreased sharply. With or without bactericide, 316L stainless steel has the best corrosion resistance due to the easy formation of chromium oxide passivation film on the surface, and H62 brass has good corrosion resistance due to Cu2+ bactericidal effect. The tetrakis hydroxymethyl phosphonium sulphate (THPS) in the compound bactericide can change the properties of cellular enzymes and proteins to cause the death of bacteria, meanwhile D-amino acids can decompose the biofilm on the surface of the metal, which can change the bacteria from the hard-to-kill fixed state to the easy-to-kill floating state to improve the bactericidal effect, and also avoid the formation of high concentrations of extracellular polymer EPS, thereby reduce the corrosion rate of the metal.
Key words:  D-amino acids    bactericide    mixed bacteria    biofilms    metallic corrosion resistance
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TG172.4  
基金资助: 国家自然科学基金 (51974245;21808182);陕西省重点研发计划资助项目(2020GY-234);西安石油大学材料科学与工程学院,西安市高性能油气田材料重点实验室,西安石油大学“材料科学与工程”省级优势学科资助项目(YS37020203);西安石油大学研究生创新与实践能力培养项目(YCS22213138)
通讯作者:  * 胥聪敏,2007年获得西安交通大学化学工程专业博士学位,现为西安石油大学材料科学与工程学院副教授,主要从事石油管的腐蚀与防护领域的科研和技术服务工作。目前已在Materials Science and Engineering AMaterials CharacteriaotionInorganic Materials和《中国化学工程学报》等国内外著名期刊上发表相关研究论文50余篇,研究论文发表后,被多次引用。近10年来,先后承担/参与完成国家自然科学基金、陕西省自然科学基金、中石油集团公司应用基础研究课题、技术开发等课题数十项;获省部级奖2项,出版专著2部。cmxu@xsyu.edu.cn   
引用本文:    
胥聪敏, 李雪丽, 朱文胜, 朱世东, 杨兴, 高豪然, 孙姝雯. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 23090099-6.
XU Congmin, LI Xueli, ZHU Wensheng, ZHU Shidong, YANG Xing, GAO Haoran, SUN Shuwen. Effect of D-amino Acid Enhanced Bactericide on Corrosion Behavior of Three Metal Materials. Materials Reports, 2024, 38(20): 23090099-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090099  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23090099
1 Little B J, Blackwood D J, Hinks J, et al. Corrosion Science, 2020, 170, 108641.
2 Liu L, Fu Q, Peng C, et al. Journal of Pipeline Systems Engineering and Practice, 2022, 13(3), 04022014.
3 He Y J, Zhang T S, Wang H T, et al. Chinese Journal of Corrosion and Protection, 2021, 41(6), 748 (in Chinese).
何勇君, 张天遂, 王海涛, 等. 中国腐蚀与防护学报, 2021, 41(6), 748.
4 Taghavi K S, Rasekh B, Yazdian F, et al. International Journal of Environmental Science and Technology, 2021, 18, 195.
5 Wei B X, Xu J, Gao L Q, et al. Surface Technology, 2021, 50(3), 30 (in Chinese).
韦博鑫, 许进, 高立群, 等. 表面技术, 2021, 50(3), 30.
6 Wan H, Zhang T, Wang J, et al. Bioelectrochemistry, 2023, 150, 108367.
7 Wang Z Q, Xu W C, Zhou Z Y, et al. Surface Technology, 2020, 49(7), 245 (in Chinese).
王正泉, 徐玮辰, 周子扬, 等. 表面技术, 2020, 49(7), 245.
8 Lovley D R. Bioresource Technology, 2022, 345, 126553.
9 Qian H C, Chang W W, Cui T Y, et al. Corrosion Science, 2021, 191, 109751.
10 Koegler F, Hartmann F S F, Schulze-Makuch D, et al. International Biodeterioration & Biodegradation, 2021, 157(6), 105158.
11 Bai Y L, Shen G L, Qin Q Y, et al. China Journal of Corrosion and Protection, 2021, 41(1), 60 (in Chinese).
白云龙, 沈国良, 覃清钰, 等. 中国腐蚀与防护学报, 2021, 41(1), 60.
12 Vaithiyanathan S, Chandrasekaran K, Barik R C. Biotechnology & Applied Microbiology, 2018, 8, 1.
13 Xu J, Jia R, Yang D Q, et al. Journal of Materials Science & Technology, 2018, 35(1), 109.
14 Jia R, Yang D Q, Hasrizal B A R, et al. International Biodeterioration & Biodegradation, 2017, 125, 116.
15 Liu H W, Fu C Y, Gu T Y, et al. Corrosion Science, 2015, 100, 484.
16 Xu C M, Luo L H, Wang W Y, et al. Journal of Chinese Society for Corrosion and protection, 2020, 40(1), 63 (in Chinese).
胥聪敏, 罗立辉, 王文渊, 等. 中国腐蚀与防护学报, 2020, 40(1), 63.
17 Guo N, Mao X M, Hui X R, et al. Chinese Journal of Corrosion and Protection, 2022, 42(5), 743 (in Chinese).
郭娜, 毛晓敏, 惠芯蕊, 等. 中国腐蚀与防护学报, 2022, 42(5), 743.
18 Xu C, Gao H, Zhu W, et al. Materials, 2021, 14(22), 6981.
19 Xu C M, Gao H R, Zhu W S, et al. Materials Reports, 2023, 37(1), 243 (in Chinese).
胥聪敏, 高豪然, 朱文胜, 等. 材料导报, 2023, 37(1), 243.
20 Li Y. Pretreatment technology and properties of electroless nickel-phosphorus plating on SiCp/Al matrix composites. Master’s Thesis, Xi’an Technological University, China, 2022 (in Chinese).
李岳. SiCp/Al基复合材料化学镀镍-磷镀层的前处理工艺与性能研究. 硕士学位论文, 西安工业大学, 2022.
21 Xu C M, Wang W Y, Liu L, et al. Natural Gas Industry, 2021, 41(2), 160 (in Chinese).
胥聪敏, 王文渊, 刘利, 等. 天然气工业, 2021, 41(2), 160.
[1] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[2] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[3] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed