Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21050076-7    https://doi.org/10.11896/cldb.21050076
  高分子与聚合物基复合材料 |
D-氨基酸驱散生物膜的行为与作用机理研究
胥聪敏1,*, 高豪然1, 朱文胜2, 杨兴1, 陈月清1, 王文渊1
1 西安石油大学材料科学与工程学院,西安 710065
2 中海油常州涂料化工研究院有限公司,江苏 常州 213000
Study on the Behavior and Mechanism of D-amino Acid Dispersing Biofilm
XU Congmin1,*, GAO Haoran1, ZHU Wensheng2, YANG Xing1, CHEN Yueqing1, WANG Wenyuan1
1 School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
2 CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd., Changzhou 213000, Jiangsu, China
下载:  全 文 ( PDF ) ( 17873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确D-氨基酸增强杀菌剂的生物膜驱散效果及杀菌机理,采用不同D-氨基酸与传统杀菌剂三丁基正十四烷基氯化膦(TTPC)、四羟甲基硫酸磷(THPS)以及抗菌肽组成复配杀菌剂,通过失重实验、电化学测试、表面分析等手段研究了复配杀菌剂对碳钢表面上的硫酸盐还原菌(SRB)、铁氧化菌(IOB)、SRB+IOB混合菌的杀菌缓蚀效果,明确了D-氨基酸驱散生物膜的行为与作用机理。结果表明:SRB和IOB发生协同作用,在碳钢试样表面形成致密的生物膜,其不仅提供了适合SRB生长的厌氧环境,还对SRB起到一定的保护作用,导致SRB+IOB混合菌造成的腐蚀最为严重,而D-氨基酸释放出的生物膜分散信号因子可改变细菌细胞壁肽聚糖成分以及调节细胞基因表达方式,通过其与细菌蛋白质结合来抑制生物膜形成,并使已有生物膜主动从碳钢表面分散脱落,破坏SRB与IOB所构成的氧浓差环境,在很大程度上抑制了因细菌所产生的胞外聚合物(EPS)导致的金属腐蚀加剧,进而使得杀菌剂能更好地杀灭生物膜下的细菌,对混合菌生物膜中SRB和IOB的杀菌率分别高达100%、82.60%,表明D-氨基酸通过驱散生物膜行为对杀菌剂起到了很好的杀菌增强效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胥聪敏
高豪然
朱文胜
杨兴
陈月清
王文渊
关键词:  D-氨基酸  混合菌  生物膜  硫酸盐还原菌(SRB)  铁氧化菌(IOB)  碳钢  杀菌增强效果    
Abstract: In order to clarify the biofilm dispersing effect and bactericidal mechanism of D-amino acid enhanced biocide, different D-amino acids were used in this work to form a compound biocides with traditional biocides tributyl tetradecyl phosphonium chloride(TTPC), tetramethyl-phosphate sulfate(THPS) and antimicrobial peptides. By means of weightloss experiment, electrochemical test and surface analysis, the bactericidal inhibition effect of compound biocide on sulfate reducing bacteria(SRB), iron oxidizing bacteria(IOB) and the mixture of SRB+IOB on the surface of carbon steel was studied, and the behavior and mechanism of dispersive biofilm by D-amino acid were determined. The results show that SRB and IOB cooperate to form dense biofilms on the surface of carbon steel samples, which not only provides an anaerobic environment suitable for the growth of SRB, but also plays a certain protective role on SRB, which will lead to the most serious corrosion caused by the mixed bacteria of SRB+IOB. The biofilm dispersal signal factor released by D-amino acid can change the peptidoglycan composition of bacterial cell wall and regulate the expression of cell genes, inhibit the formation of biofilm by binding with bacterial proteins, and make the existing biofilm actively disperse off the surface of carbon steel, and destroy the oxygen concentration difference environment formed by SRB and IOB. D-amino acid to a large extent inhibits the aggravation of metal corrosion caused by extracellular polymeric substances(EPS) produced by bacteria, and thus enables biocides to better kill bacteria under the biofilm. The biocidal rates of SRB and IOB in the mixed biofilm are up to 100% and 82.60%, respectively. The results showed that D-amino acid had a good bactericidal enhancement effect on the biocide by dispersing the biofilm behavior.
Key words:  D-amino acid    mixed bacteria    biofilm    sulfate reducing bacteria(SRB)    iron oxidizing bacteria(IOB)    carbon steel    bactericidal enhancement effect
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG172.4  
基金资助: 陕西省重点研发计划项目(2020GY-234);国家自然科学基金 (51974245;21808182);西安石油大学材料科学与工程学院,西安市高性能油气田材料重点实验室,西安石油大学“材料科学与工程”省级优势学科(YS37020203);西安石油大学研究生创新与实践能力培养项目(YCS20112020;YCS20112021)
通讯作者:  * 胥聪敏,2000年获得西北大学化工设备与机械专业学士学位,2003年获得西安石油大学材料加工工程专业硕士学位,2007年获得西安交通大学化学工程专业博士学位,现为西安石油大学材料科学与工程学院教授,主要从事石油管的腐蚀与防护领域的科研和技术服务工作。目前已在Materials Science and Engineering: A、Materials Characteriaotion、Inorganic Materials和《中国化学工程学报》等国内外著名期刊上发表相关研究论文50余篇。cmxu@xsyu.edu.cn   
引用本文:    
胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
XU Congmin, GAO Haoran, ZHU Wensheng, YANG Xing, CHEN Yueqing, WANG Wenyuan. Study on the Behavior and Mechanism of D-amino Acid Dispersing Biofilm. Materials Reports, 2023, 37(1): 21050076-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050076  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21050076
1 Xu C, Zhang Y, Cheng G, et al. Materials Characterization, 2008, 59(3), 245.
2 Rao T S, Kora A J, Chandramohan P, et al. Biofouling, 2009, 25(7-8), 581.
3 Armon J S S. Engineering Failure Analysis, 2007, 14(8), 1500.
4 Héctor A V, Herrera L K. International Microbiology, 2005, 8(3), 169.
5 Lerm S, Westphal A, Miethling-Graff R, et al. Extremophiles, 2013, 17(2), 311.
6 Li X, Zhang D, Liu Z, et al. Nature, 2015, 527(7579), 441.
7 Liu H, Gu T, Lv Y, et al. Corrosion Science, 2017, 1(117), 24.
8 Liu H, Gu T, Zhang G, et al. Corrosion Science, 2016, 4(105), 149.
9 Shatirova M I, Movsumzade M M, Dzhafarova U S, et al. Petroleum Chemistry, 2019, 2(59), 220.
10 Yang Chunlu, Yuan Meiyu, Shi Rongjiu, et al. Environmental Science, 2018, 39(10), 4783(in Chinese).
杨春璐, 苑美玉, 史荣久, 等. 环境科学, 2018, 39(10), 4783.
11 Ji Fang, Chen Bolei, Liang Yong. Acta Microbiologica Sinica, 2018, 58(12), 2078(in Chinese).
纪芳, 陈博磊, 梁勇. 微生物学报, 2018, 58(12), 2078.
12 Jia R, Unsal T, Xu D, et al. International Biodeterioration & Biodegradation, 2019, 137, 42.
13 Liu H, Fu C, Gu T, et al. Corrosion Science, 2015, 11(100), 484.
14 Xu Congmin, Luo Lihui, Wang Wenyuan, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(1), 63(in Chinese).
胥聪敏, 罗立辉, 王文渊, 等. 中国腐蚀与防护学报, 2020, 40(1), 63.
15 Xu Congmin, Wang Wenyuan, Liu Li, et al. Natural Gas Industry, 2021, 41(2), 160(in Chinese).
胥聪敏, 王文渊, 刘利, 等. 天然气工业, 2021, 41(2), 160.
16 Zhai Fangting, Li Huihui, Xu Congmin. Journal of Xi'an Technological University, 2015, 35(8), 654(in Chinese).
翟芳婷, 李辉辉, 胥聪敏. 西安工业大学学报, 2015, 35(8), 654.
17 Qin Ming. Corrosion behavior and protection methods of 9Ni steel in seawate. Master’s Thesis, University of Chinese Academy of Sciences(Institute of Oceanology, Chinese Academy of Sciences), China, 2018(in Chinese).
覃明. 9Ni钢在海水中的腐蚀行为及防护方法研究. 硕士学位论文, 中国科学院大学(中国科学院海洋研究所), 2018.
18 Tang Heqing, Guo Zhihu, Zhang Junhua, et al. Journal of Chinese Society for Corrosion and Protection, 1991(1), 46(in Chinese).
唐和清, 郭稚弧, 张君华, 等. 中国腐蚀与防护学报, 1991(1), 46.
19 Kolodkin-Gal I, Romero D, Cao S, et al. Science, 2010, 328(5978), 627.
20 Xu D, Jia R, Li Y, et al. World Journal of Microbiology & Biotechnology, 2017, 33(5), 97.
[1] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[2] 韦文厂, 刘峥, 魏润芝, 刁娜, 吕奕菊. 基于MOFs材料的超疏水复合涂层的制备及其对碳钢的防腐蚀研究[J]. 材料导报, 2021, 35(20): 20068-20075.
[3] 李炎铮, 云晓雪, 赖承班, 何昌林, 闵永安. 添加1%Mo提高针阀体用钢18Cr2Ni2的强韧性[J]. 材料导报, 2021, 35(12): 12130-12135.
[4] 韦文厂, 刘峥, 魏润芝, 吕奕菊, 韩佳星, 张淑芬. 2-氨基芴双希夫碱在模拟循环冷却水中对低碳钢的缓蚀性能[J]. 材料导报, 2021, 35(12): 12196-12201.
[5] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[6] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[7] 温俊霞, 曹睿, 李骏鹏, 曾茂燕, 陈璟. 球墨铸铁表面CMT堆焊H08Mn2Si焊丝的研究[J]. 材料导报, 2019, 33(Z2): 447-451.
[8] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[9] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[10] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[11] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[12] 许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
[13] 谢 飞,王兴发,王 丹,孙东旭,戚建晶. 生物膜作用下管线钢应力腐蚀开裂行为研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1541-1548.
[14] 吴明, 郭紫薇, 谢飞, 王丹, 王义闯, 郭大成, 姜锦涛. 阴离子和硫酸盐还原菌作用下管线钢腐蚀行为的研究进展[J]. 材料导报, 2018, 32(19): 3435-3443.
[15] 王必磊, 李永灿, 宋长江. 关于低碳钢屈服延伸现象的研究现状[J]. 材料导报, 2018, 32(15): 2659-2665.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed