Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12196-12201    https://doi.org/10.11896/cldb.20030120
  高分子与聚合物基复合材料 |
2-氨基芴双希夫碱在模拟循环冷却水中对低碳钢的缓蚀性能
韦文厂1, 刘峥1, 魏润芝1, 吕奕菊1, 韩佳星1, 张淑芬2
1 桂林理工大学化学与生物工程学院,电磁化学功能物质广西区重点实验室,桂林 541004
2 大连理工大学精细化工重点实验室,大连 116024
Corrosion Inhibition Performance of 2-aminofluorene Bis-Schiff Base on Mild Steel in Simulated Circulating Cooling Water
WEI Wenchang1, LIU Zheng1, WEI Runzhi1, LYU Yiju1, HAN Jiaxing1, ZHANG Shufen2
1 Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, School of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
2 Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 3587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过溶液法,以2-氨基芴、吡啶-2,6-二甲醛、溴代丙二醛为原料,成功合成出2,6-二氨基吡啶缩2-氨基芴双希夫碱(A1)和溴代丙二醛缩2-氨基芴双希夫碱(A2),采用红外光谱、质谱分析等对A1和A2进行了结构表征,利用失重法、电化学测量技术、扫描电镜研究其在模拟循环冷却水中对低碳钢的缓蚀性能,并利用量子化学计算初步探讨了A1和A2的缓蚀机理。失重结果表明,A1和A2在温度为25 ℃、浓度为1.0 mmol·L-1时,最能有效抑制模拟循环冷却水对低碳钢的腐蚀,其缓蚀效率分别为96.85%和93.46%。动电位极化曲线和交流阻抗谱结果均表明两种缓蚀剂有较好的缓蚀效率,且均为以阳极抑制为主的阳极型缓蚀剂。吸附研究表明A1和A2在低碳钢表面均遵循Langmiur吸附,ΔGadsθ值分别为-27.02 kJ·mol-1、-29.03 kJ·mol-1,为混合型吸附。量子化学计算结果揭示了两种缓蚀剂分子结构中的吸附位点,且分子结构参数分析表明,A1的缓蚀效果优于A2。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦文厂
刘峥
魏润芝
吕奕菊
韩佳星
张淑芬
关键词:  2-氨基芴  模拟循环冷却水  低碳钢  双希夫碱  吸附机理  缓蚀性能    
Abstract: The raw materials 2-aminofluorene, pyridine-2,6-dicarbaldehyde and bromomalonaldehyde were used to synthesize pyridine-2,6-dicarbaldehyde-2-aminofluorene bis-Schiff base (A1) and bromopropanedialdehyde-2-aminofluorene bis-Schiff base (A2) by solution method. The structures of A1 and A2 were characterized by IR and FTMS. The corrosion inhibition performances of A1 and A2 were investigated by weight loss, electrochemical measurements and scanning electron microscope (SEM). The corrosion inhibition mechanisms of A1 and A2 were explored by quantum chemical calculation. The weight loss analysis showed that A1 and A2 exhibited the maximum inhibition efficiencies of 96.85% and 93.46% with the concentration of 1.0 mmol·L-1 in simulated circulating cooling water at 25 ℃, respectively. Electrochemical research showed that the two inhibitors have better corrosion inhibition efficiency. Both A1 and A2 followed Langmiur adsorption isotherm on the mild steel surface, and the value of ΔGadsθ are -27.02 kJ·mol-1 and -29.03 kJ·mol-1, respectively. These are mixed type adsorption and are anode type corrosion inhibitors mainly based on anode inhibition. Both A1 and A2 showed good corrosion inhibition performance in simulated circulating cooling water, and A1 has better inhibition property than A2.
Key words:  2-aminofluorene    simulated circulating cooling water    mild steel    bis-Schiff base    adsorption mechanism    corrosion inhibition performance
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TG174.4  
基金资助: 广西自然科学基金(2016GXNSFAA380109;2018GXNSFAA294042);广西特聘专家专项经费资助(2401007012)
通讯作者:  lisa4.6@163.com   
作者简介:  韦文厂,桂林理工大学硕士研究生,主要从事有机合成与应用研究。
刘峥,硕士,教授、博士研究生导师,现任教于桂林理工大学化学与生物工程学院。2006年毕业于湘潭大学,获博士学位。主要研究应用有机合成新技术。近年来,发表科研论文60多篇,其中SCI或EI收录超过30篇。
引用本文:    
韦文厂, 刘峥, 魏润芝, 吕奕菊, 韩佳星, 张淑芬. 2-氨基芴双希夫碱在模拟循环冷却水中对低碳钢的缓蚀性能[J]. 材料导报, 2021, 35(12): 12196-12201.
WEI Wenchang, LIU Zheng, WEI Runzhi, LYU Yiju, HAN Jiaxing, ZHANG Shufen. Corrosion Inhibition Performance of 2-aminofluorene Bis-Schiff Base on Mild Steel in Simulated Circulating Cooling Water. Materials Reports, 2021, 35(12): 12196-12201.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030120  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12196
1 Zhao Q. Natural Gas and Oil, 2010, 28(2), 46 (in Chinese).
赵琼.天然气与石油, 2010, 28(2), 46.
2 Xu Q, Gao K, Lv W, et al. Corrosion Science, 2016, 102(2), 114.
3 Wu M, Guo Z W, Xie F, et al. Materials Reports A:Review Papers, 2018, 32(10), 158 (in Chinese).
吴明, 郭紫薇, 谢飞, 等.材料导报:综述篇, 2018, 32(10),158
4 Liang R, Li J, Liu M, et al. Colloids and Surfaces B: Biointerfaces, 2018, 172, 1.
5 Zhang Y L, Li Z X, Ye Q, et al. Advanced Materials Interfaces, 2019, 6(21), 1900942.
6 Nam N D, Ha P T N, Anh H T, et al. Journal of Saudi Chemical Society, 2019, 23(1), 30.
7 Li J L, Bai F L, Lu Y B, et al. Corrosion & Protection, 2012, 33(9), 787 (in Chinese).
李俊莉, 白方林, 卢永斌, 等.腐蚀与防护, 2012, 33(9), 787.
8 Singh A, Ansari K R, Xu X H, et al. Scientific Reports, 2017, 7, 14904.
9 Arshad I, Saeed A, channar P A, et al. RSC Advances, 2020, 10(8), 4499.
10 Torres V V, Amado R S, Sa C F D, et al.Corrosion Science, 2011, 53(7), 2385.
11 Wang L. Materials Reports B:Research Papers, 2020, 34(2), 4174 (in Chinese).
王磊.材料导报:研究篇, 2020, 34(2),4174.
12 Hamidreza P, Nezamaddin M, Yaghoub H, et al. Environmental Science & Pollution Research International, 2018, 25(25), 1.
13 Saxena A, Prasad R, Haldhar G, et al. Journal of Molecular Liquids, 2018, 258, 89.
14 Hsu C H, Mansfeld F.Corrosion Science, 2001, 57, 747.
15 LI X D, An M M. Materials Reports B:Research Papers, 2017, 31(11), 167 (in Chinese).
李晓东, 安梅梅.材料导报:研究篇, 2017, 31(11),167.
16 Naeimi H, Sadat N Z, Matin A S, et al. Journal of Antibiotics, 2013, 66, 6.
17 Li F H, Bai M N, Wei S A, et al. Industrial & Engineering Chemistry Research, 2019, 58, 7166.
18 Maré G R D, Bock C W, et al. Chemical Data Collections, 2018, 15-16, 97.
19 Singh D K, Kumar S, Udayabhanu G, et al. Journal of Molecular Liquids, 2016, 216, 738.
20 Chidiebere M A, Ogukwe C E, Oguzie K L, et al. Industrial & Enginee-ring Chemistry Research, 2012, 51, 668.
21 Frederic M, Wanderson O S, Luis C, et al. ChemPhysChem, 2019, 20(22), 50.
22 Olasunkanmi L O, Obot I B, Kabanda M M, et al. Journal of Physical Chemistry C, 2015, 119(28), 16004.
23 Zhang Q B, Hua Y X. Electrochimica Acta, 2009, 54(6), 1881.
24 Wang Y F, Qian C, Yang Z, et al. Materials Reports B:Research Papers, 2019, 33(2), 134 (in Chinese).
王业飞, 钱程, 杨震, 等.材料导报:研究篇, 2019, 33(2), 134.
25 Zhang C L, Fei J M, Guo L, et al. Ceramics International, 2018, 44(8), 8818.
26 Solomon M M, Umoren S A. Journal of Environmental Chemical Enginee-ring, 2015, 3(3), 1812.
27 Zhou Y, Xu S Y, Guo L, et al. RSC Advances, 2015, 5(19), 14804.
28 Xiao Y, Ding L L, Liao W J, et al. Materials Reports, 2016, 30(S1), 217 (in Chinese).
肖扬, 丁柳柳, 廖文俊, 等.材料导报, 2016, 30(S1),217.
29 Yu C, Liu H X, Lyu J F, et al. Industrial & Engineering Chemistry Research, 2019, 58(27), 17.
30 Saha S K, Ghosh P, Hens A, et al. Physica E: Low-dimensional Systems and Nanostructures, 2015, 66, 332.
31 Guo L, Obot I B, Zheng X, et al. Applied Surface Science, 2017, 406, 301.
32 Hany M, Abd E L, Abdel-Rahman E, et al. International Journal of Industrial Chemistry, 2019, 10(1), 31.
33 Yesudass S, Olasunkanmi L O, Bahadur I, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 252.
34 Lgaz H, Bhat K S, Salghi R, et al. Journal of Molecular Liquids, 2017, 238, 71.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[3] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[4] 王路星, 周新涛, 罗中秋, 母维宏, 马越, 邵周军. 农林废弃物吸附废水中重金属Pb2+的性能及机理研究进展[J]. 材料导报, 2020, 34(17): 17115-17123.
[5] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[6] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[7] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[8] 梅友静, 徐金霞, 蒋林华, 陈平, 谭启平. 焙烧Mg-Al水滑石水泥浆涂层对钢筋氯离子腐蚀的缓蚀性能[J]. 材料导报, 2018, 32(22): 3941-3947.
[9] 王必磊, 李永灿, 宋长江. 关于低碳钢屈服延伸现象的研究现状[J]. 材料导报, 2018, 32(15): 2659-2665.
[10] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[11] 王彬, 薛文斌, 陈琳, 魏克俭, 吴正龙. 低碳钢液相等离子体电解硼碳共渗层生长特性研究*[J]. 《材料导报》期刊社, 2017, 31(14): 67-71.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed