Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1032-1035    https://doi.org/10.11896/cldb.201906022
  金属与金属基复合材料 |
两相区形变对含铜低碳钢合金元素配分的影响
陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英
华北理工大学教育部现代冶金技术重点实验室,唐山 063210
Effect of Intercritical Deformation on Alloy Elements Partitioning of Copper-bearing Low-carbon Steel
CHEN Liansheng, LI Yue, TIAN Yaqiang, ZHENG Xiaoping, WEI Yingli, SONG Jinying
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of Science and Technology, Tangshan 063210
下载:  全 文 ( PDF ) ( 2382KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用DIQ(两相区形变-保温-淬火)热处理工艺,借助扫描电镜(SEM)及透射电镜(TEM)等测试手段研究了两相区不同变形量对一种含Cu低碳钢组织演变、位错密度和Mn、Cu合金元素配分行为与分布的影响规律。结果表明,对于经历了两相区热模拟压缩变形处理的含Cu低碳钢,随变形量的增加,铁素体和马氏体组织均趋于细化,位错密度逐渐增加,合金元素配分行为先增强后减弱。两相区变形处理的变形量为10%时,Mn、Cu原子的配分效果最好,二者在马氏体中的平均含量较原实验钢分别提高了62.82%和20.73%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈连生
李跃
田亚强
郑小平
魏英立
宋进英
关键词:  含铜低碳钢  两相区形变  位错增殖  空位  合金元素配分    
Abstract: The purpose of the present work was to study a novel heat treatment process, i.e. intercritical deformation-intercritical annealing-quenching (DIQ), for the microstructure improvement of copper-bearing low-carbon steel. The thermal simulation test was conducted and the microscopic observation of SEM and TEM were employed to analyze the microstructure evolution, dislocation density, and Mn, Cu elements partitioning and distribution within the Cu-bearing low-carbon steel specimens experienced the DIQ processes differing in deformation extent. The results indicated that, for the experimental steel processed by simulated DIQ, a larger deformation extent can lead to the refinement of ferrite and martensite, the gradual increase in dislocation density, and the biphasic change (enhanced → attenuated) of the alloy elements partitioning beha-vior. Through the DIQ treatment with 10% deformation, the best partitioning of Mn and Cu atoms could be achieved, as the average concentration of Mn and Cu within martensite increased by 62.82% and 20.73%, respectively, compared with the original steel specimen.
Key words:  copper-bearing low-carbon steel    intercritical deformation    dislocation multiplication    vacancy    alloy elements partitioning
               出版日期:  2019-03-25      发布日期:  2019-04-03
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51574107);河北省自然科学基金(E2016209048;E2017209048);唐山市科技创新团队(15130202C);河北省 研究生创新项目(2017S01)
作者简介:  陈连生,华北理工大学技术转移中心副主任、科学技术处副处长,博士,教授,硕士研究生导师。田亚强,华北理工大学冶金与能源学院金属材料及加工工程系副主任,河北省新世纪“三三三人才工程”第三层次人选,教授,硕士研究生导师。
引用本文:    
陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
CHEN Liansheng, LI Yue, TIAN Yaqiang, ZHENG Xiaoping, WEI Yingli, SONG Jinying. Effect of Intercritical Deformation on Alloy Elements Partitioning of Copper-bearing Low-carbon Steel. Materials Reports, 2019, 33(6): 1032-1035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906022  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1032
1 Kang Y L, Zhu G M. Iron and Steel,2014,49(12),1(in Chinese).
康永林, 朱国明. 钢铁,2014,49(12),1.
2 Zhao J W, Jiang Z Y.Progress in Materials Science,2018,94(5),174.
3 Speer J, Matlock D K, Cooman B C D, et al. Acta Materialia,2003,51(9),2611.
4 Cho L, Seo E J, Cooman B C D. Scripta Materialia,2016,123,69.
5 Santofimia M J, Speer J G, Clarke A J, et al. Acta Materialia,2009,57(15),4548.
6 Yan S, Liu X H, Liu W J, et al. Materials Science & Engineering A,2017,684,261.
7 Moor E D, Matlock D K, Speer J G, et al. Scripta Materialia,2011,64(2),185.
8 Lee S, Lee S J, Cooman B C D. Scripta Materialia,2011,65(3),225.
9 Seo E J, Cho L, Estrin Y, et al. Acta Materialia,2016,113,124.
10 Yan S, Liu X H, Liu W J, et al. Acta Metallurgica Sinica,2013,49(8),917(in Chinese).
闫述, 刘相华, 刘伟杰, 等. 金属学报,2013,49(8),917.
11 Wang X J, Shen Q, Yan J J, et al. Acta Metallurgica Sinica,2014,50(11),1305(in Chinese).
王晓姣, 沈琴, 严菊杰, 等.金属学报,2014,50(11),1305.
12 Chen L S, Zhang J Y, Tian Y Q, et al. Acta Metallurgica Sinica,2015,51(5),527(in Chinese).
陈连生, 张健杨, 田亚强,等. 金属学报,2015,51(5),527.
13 Chen L S, Cao H Z, Tian Y Q, et al. Materials Review B:Research Papers,2017,31(3),105(in Chinese).
陈连生, 曹鸿梓, 田亚强, 等. 材料导报:研究篇,2017,31(3),105.
14 Chen L S, Hu B J, Song J Y, et al. Journal of Materials Engineering,2017,45(2),96(in Chinese).
陈连生, 胡宝佳, 宋进英, 等. 材料工程,2017,45(2),96.
15 Tian Y Q, Zhang H J, Chen L S, et al. Acta Metallurgica Sinica,2014,50(5),531(in Chinese).
田亚强, 张宏军, 陈连生, 等. 金属学报,2014,50(5),531.
16 Kojima A, Watanabe Y, Terada Y, et al. ISIJ International,1996,36(5),603.
17 Calcagnotto M, Adachi Y, Ponge D, et al. Acta Materialia,2011,59(2),658.
18 Cui Z Q, Tan Y C. Metallgraphy & Heat Treatment, China Machine Press, China,2009(in Chinese).
崔忠圻, 覃耀春. 金属学与热处理, 机械工业出版社,2009.
19 Browning N D, Chisholm M F, Pennycook S J. Nature,1993,366(6451),143.
20 Ye C H, Wei X, Lu H. Materials Review B:Research Papers,2016,30(4),132(in Chinese).
叶诚辉, 魏啸, 陆皓. 材料导报:研究篇,2016,30(4),132.
21 Kostka A, Tak K G, Hellmig R J, et al. Acta Materialia,2007,55(2),539.
22 Zhao H S, Li W,Zhu X, et al. Materials Science & Engineering: A,2016,649,18.
23 Peš icka J, Kužel R, Dronhofer A, et al. Acta Materialia,2003,51(16),4847.
24 Yabuuchi K, Kasada R, Kimura A. Acta Materialia,2013,61(17),6517.
25 Etesami S A, Enayati M H. Journal of Materials Engineering & Perfor-mance,2016,25(2),349.
26 Hu G X. Fundamentals of Materials Science, Shanghai Jiao Tong University Press, China,2010(in Chinese).
胡赓祥. 材料科学基础, 上海交通大学出版社, 2010.
27 Kuang S, Kang Y L, Yu H, et al. Chinese Journal of Engineering,2008,30(8),858(in Chinese).
邝霜, 康永林, 于浩, 等. 工程科学学报,2008,30(8),858.
[1] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed