Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17115-17123    https://doi.org/10.11896/cldb.19110180
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
农林废弃物吸附废水中重金属Pb2+的性能及机理研究进展
王路星1, 周新涛1, 罗中秋1,2, 母维宏1, 马越1, 邵周军1
1 昆明理工大学化学工程学院,昆明 650500
2 昆明理工大学云南省高校磷化工重点实验室,昆明 650500
Research Progress of the Properties and Mechanism of Heavy Metal Pb2+ Absorbed by Agricultural and Forestry Waste in Wastewater
WANG Luxing1, ZHOU Xintao1, LUO Zhongqiu1,2, MU Weihong1, MA Yue1, SHAO Zhoujun1
1 Faculty of Chemical Engineering,Kunming University of Science and Technology, Kunming 650500, China
2 The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 4754KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人体Pb2+超标会造成贫血、肾功能衰竭、内分泌系统和中枢神经系统紊乱等症状。Pb2+可通过含Pb2+废水、废渣等形式对环境造成污染,其中含Pb2+废水不仅对水源造成直接污染,同时也会在流经区域土壤形成Pb2+富积而造成土壤重金属污染,因此对含Pb2+废水的无害化处理刻不容缓。
   废水中Pb2+的去除方法主要包括离子交换法、化学沉淀法、电化学法、膜过滤法和吸附法等,其中,吸附法因具有效率高、方便操作和成本低等优点而被广泛应用。商业活性炭吸附废水中Pb2+的效果很好,但是高成本限制其使用,因此寻找活性炭替代吸附剂是吸附法处理含Pb2+废水技术发展的关键。
   农林废弃物(AFW)因其来源广泛、种类繁多、成本低廉、吸附效果好、吸附材料可再生等诸多优势,被广泛应用于废水中Pb2+的去除。可通过酸碱盐改性、结构改性、炭化改性、有机溶剂改性和复合改性等对AFW进行处理,以提高其吸附效率。同时,Pb2+初始浓度、吸附剂量、pH值、温度和时间等因素对AFW吸附Pb2+的效率有较大的影响。AFW可通过离子交换、络合作用、物理吸附、化学沉淀等多重作用机制实现Pb2+的高效吸附,其吸附动力学一般符合准二级动力学模型,吸附热力学一般符合Langmuir热力学模型或Freundlich热力学模型。
   本文综述了AFW吸附废水中Pb2+的研究现状与进展,从AFW改性、Pb2+吸附影响因素及其作用机制等方面进行了讨论。最后,对AFW吸附Pb2+研究中存在的问题进行了分析,并对其未来的研究方向进行了展望,以期为制备稳定可循环的AFW提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王路星
周新涛
罗中秋
母维宏
马越
邵周军
关键词:  农林废弃物  吸附  废水  重金属Pb2+  改性  吸附机理    
Abstract: Excessive Pb2+ in human body can cause some diseases such as anemia, renal failure, endocrine system and central nervous system disorders. Pb2+ pollution may exist in the form of waste water and solid waste. Among them, the Pb2+ containing waste water can not only directly cause the water source pollution, but also contaminate the soil in the related area. So the treatment of Pb2+ containing waste water is urgent.
Pb2+ can be removed from water by means of ion exchange, chemical precipitation, electrochemical method, membrane filtration and adsorption method. Adsorption method has been extensively used for the treatment of waste water due to its high efficiency, easy operation and low cost. Commercial activated carbon has better adsorption effect to treat waste water, but the high cost limits its utilization as an adsorbent. Hence, it is a key point to develop an alternative of activated carbon for the technology of wastewater treatment.
Agricultural and forestry waste (AFW) has been widely used to remove the Pb2+ in wastewater due to the advantages such as wealth sources, great varieties, low cost, good adsorption effect and renewability. Moreover, the adsorption efficiency of AFW can be improved by means of acid-base salt modification, structure modification, carbonization modification, organic solvent modification and compound modification. Meanwhile the factors such as the initial concentration of Pb2+, amount of adsorbent, pH value, adsorption temperature and time have great influences on the adsorption efficiency of AFW. AFW can efficiently adsorb the Pb2+ in wastewater through ion exchange, coordination action, physical adsorption and chemical precipitation. The adsorption kinetics can be described by pseudo second order, and the thermodynamics can be calculated by Langmuir isotherm model and Freundlich thermodynamic model.
This paper reviewes the research progress on the adsorption of Pb2+ in wastewater by AFW. The modification of AFW, the influence factors of Pb2+ adsorption and adsorption mechanism are discuss in this paper. We also discuss the directions of future research on the adsorption of Pb2+ by AFW, thus to provide a reference for the development of stable and renewable AFW adsorbents.
Key words:  agricultural and forestry waste    adsorption    wastewater    heavy metal Pb2+    modification    adsorption mechanism
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  X703.1  
基金资助: 国家自然科学基金地区基金(51662024;21866018);昆明理工大学引进人才科研启动基金资助项目(KKSY201605021)
通讯作者:  luozhongq@126.com   
作者简介:  王路星,2018年6月毕业于武汉轻工大学,获得化学工程与工艺学士学位。现为昆明理工大学化学工程学院硕士研究生,目前主要研究领域为环境化工。
罗中秋,2015年12月取得昆明理工大学环境工程博士学位。主要从事工业固体废弃物资源化和危险废物处理研究工作,包括粉煤灰、磷渣、赤泥、钢铁冶金渣等工业废渣的深度活化方法,制备低温陶瓷胶凝材料,建立化学键合陶瓷胶凝材料性能评价体系并将其应用于危险废物处理方面。
引用本文:    
王路星, 周新涛, 罗中秋, 母维宏, 马越, 邵周军. 农林废弃物吸附废水中重金属Pb2+的性能及机理研究进展[J]. 材料导报, 2020, 34(17): 17115-17123.
WANG Luxing, ZHOU Xintao, LUO Zhongqiu, MU Weihong, MA Yue, SHAO Zhoujun. Research Progress of the Properties and Mechanism of Heavy Metal Pb2+ Absorbed by Agricultural and Forestry Waste in Wastewater. Materials Reports, 2020, 34(17): 17115-17123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110180  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17115
1 Karri V, Ramos D, Martinez J B, et al.Journal of Proteomics,2018,187,106.
2 Luo J, Sun M, Ritt C, et al.Environmental Science & Technology,2019, 53(4), 2075.
3 Wang N, Jin R N, Omer A M, et al.International Journal of Biological Macromolecules, 2017, 102, 232.
4 Peng W, Li H, Liu Y, et al.Applied Surface Science,2016,364, 620.
5 Foroutan R, Mohammadi R, Farjadfard S, et al.Environmental Science and Pollution Research, 2019, 26(7), 6336.
6 Cao Y, Xiao W, Shen G, et al.Bioresource Technology, 2019, 273, 70.
7 Mo J, Yang Q, Zhang N, et al.Journal of Environmental Management, 2018, 227, 395.
8 Saadat S, Karimi-Jashni A.Chemical Engineering Journal, 2011, 173(3), 743.
9 Sajjadi S A, Meknati A, Lima E C, et al.Journal of Environmental Management, 2019, 236, 34.
10 Hu C, Qiu M.Nature Environment and Pollution Technology, 2019, 18(1), 225.
11 Basu M, Guha A K, Ray L.Journal of Cleaner Production, 2017, 151, 603.
12 Jena S, Sahoo R K.Engineering and Technology, 2017, 5(1), 5.
13 Petrovi J T, Stojanovi M D, Milojkovi J V, et al.Journal of Environmental Management, 2016, 182, 292.
14 Chand P, Bafana A, Pakade Y B.International Biodeterioration & Biodegradation, 2015, 97, 60.
15 Babu A N, Reddy D S, Kumar G S, et al.Journal of Environmental Management, 2018, 218, 602.
16 Yue C S, Chong K H, Eng C C, et al.Journal of Water Resource and Protection, 2016, 8(5), 568.
17 Mehrdad C, Soheil S A, Raziyeh Z, et al.Iranian Journal of Toxicology, 2015, 9(28), 1247.
18 Soliman A M, Elwy H M, Thiemann T, et al.Journal of the Taiwan Institute of Chemical Engineers, 2016, 58, 264.
19 Naiya T K, Bhattacharya A K, Mandal S, et al.Journal of Hazardous Materials, 2009, 163(2-3), 1254.
20 Anwar J, Shafique U, Salman M, et al.Bioresource Technology, 2010, 101(6), 1752.
21 Gala A, Sanak-Rydlewska S.Polish Journal of Environmental Studies, 2011, 20(4),877.
22 Abdelhafez A A, Li J.Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 367.
23 Liu X, Zhao B.Modern Chemical Industry, 2018, 38(12), 39 (in Chinese).
刘雪梅, 赵蓓. 现代化工, 2018, 38(12), 39.
24 Dada A O, Ojediran J O, Olalekan A P.Advances in Physical Chemistry, 2013 50, 6.
25 Mahmood-ul-Hassan M, Suthar V, Rafique E, et al.Environmental Monitoring and Assessment, 2015, 187(7), 470.
26 Mutiara T, Setyaningsih L, Chafidz A, et al.Materials Science and Engineering, 2019, 543(1), 012094.
27 Wojnárovits L, Földváry C M, Takács E.Radiation Physics and Chemistry, 2010, 79(8), 848.
28 Hokkanen S, Bhatnagar A, Sillanpää M.Water Research, 2016, 91, 156.
29 Xu S, Gong X F, Liu C Y. Modern Chemical Industry, 2016 (3), 34.
徐升, 弓晓峰, 刘春英. 现代化工, 2016 (3), 34.
30 Lu X, Guo Y.Environmental Science and Pollution Research, 2019, 26(13), 12776.
31 Karnitz Jr O, Gurgel L V A, De Melo J C P, et al.Bioresource Technology, 2007, 98(6), 1291.
32 Ding Z, Yu R, Hu X, et al.Cellulose, 2014, 21(3), 1459.
33 Lugo-Lugo V, Hernández-López S, Barrera-Díaz C, et al.Journal of Hazardous Materials, 2009, 161(2-3), 1255.
34 Inyang M, Gao B, Ding W, et al.Separation Science and Technology, 2011, 46(12), 1950.
35 Zhou N, Chen H, Xi J, et al.Bioresource Technology, 2017, 232, 204.
36 Li Y, Liu J, Yuan Q, et al.RSC Advances, 2016, 6(51), 45041.
37 Chi T, Zuo J, Liu F.Frontiers of Environmental Science & Engineering, 2017, 11(2), 15.
38 Komnitsas K, Zaharaki D, Bartzas G, et al.Desalination and Water Treatment, 2016, 57(7), 3237.
39 Saka C, Şahin Ö, Demir H, et al.Separation Science and Technology, 2011, 46(3), 507.
40 Noeline B F, Manohar D M, Anirudhan T S.Separation and Purification Technology, 2005, 45(2), 131.
41 Wang C Y, Yan X H, Fu C M. Contemporary Chemical Industry, 2017, 46(1), 61 (in Chinese).
王春云, 闫新豪, 符纯美. 当代化工, 2017, 46(1), 61.
42 Chand P, Bokare M, Pakade Y B.Environmental Science and Pollution Research, 2017, 24(11), 10454.
43 Hamza I A A, Martincigh B S, Ngila J C, et al.Physics and Chemistry of the Earth, 2013, 66, 157.
44 Fan L, Luo C, Sun M, et al.Colloids and Surfaces B: Biointerfaces, 2013, 103, 523.
45 Kanwal F, Rehman R, Anwar J, et al.Asian Journal of Chemistry, 2013, 25(5), 2399.
46 Le V T, Pham T M, Doan V D, et al.Separation Science and Technology, 2019,42,1.
47 Li X, Zhou H, Wu W, et al.Journal of Colloid and Interface Science, 2015, 448, 389.
48 Tan K L, Hameed B H.Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 25.
49 Febrianto J, Kosasih A N, Sunarso J, et al.Journal of Hazardous Mate-rials, 2009, 162(2-3), 616.
50 Farooq U, Kozinski J A, Khan M A, et al.Bioresource Technology, 2010, 101(14), 5043.
51 Alhumaimess M S, Alsohaimi I H, Alqadami A A, et al.Journal of Sol-Gel Science and Technology, 2019, 89(2), 602.
52 Ojeme V C, Ayodele O, Oluwasina O O, et al.BioResources, 2019, 14(2), 2622.
53 Heraldy E, Lestari W W, Permatasari D, et al.Journal of Environmental Chemical Engineering, 2018, 6(1), 1201.
54 Filote C, Volf I, Santos S C R, et al.Science of the Total Environment, 2019, 648, 1201,.
55 Chen Z, Zhang J, Huang L, et al.Journal of Integrative Agriculture, 2019, 18(1), 201.
56 Chidi O, Kelvin R.Chemistry International,2018, 4(4), 221.
57 Moon M J, Kam S K, Lee M G.Journal of Environmental Science International, 2018, 27(6), 401.
58 Viotti P V, Moreira W M, dos Santos O A A, et al.Journal of Cleaner Production, 2019, 219, 809.
59 Semerjian L.Environmental Technology & Innovation, 2018, 12, 91.
60 Foo K Y, Hameed B H.Chemical Engineering Journal, 2010, 156(1), 2.
61 Liu G, Zhang W, Luo R.Polymer Bulletin, 2019, 76(3), 1099.
62 Choi H J.Water Science and Technology, 2019, 79(10), 1922.
63 Liang M, Wang D, Zhu Y, et al.Journal of Water Process Engineering, 2018, 21, 69.
64 Demiral H, Baykul E, Gezer M D, et al.Separation Science and Technology, 2014, 49(17), 2711.
65 Alkherraz A M, Ali A K, Elsherif K M.Chemistry International, 2020, 6(1), 11.
66 Liu J, Hu C, Huang Q.Bioresource Technology, 2019, 271, 487.
67 Huang Y, Zhao R, Liu W, et al.Saudi Journal of Biological Sciences, 2018, 25(6), 1154.
68 Iqbal M, Saeed A, Zafar S I.Journal of Hazardous Materials, 2009, 164(1), 161.
69 Nadeem R, Manzoor Q, Iqbal M, et al.Journal of Industrial and Engineering Chemistry, 2016, 35, 185.
70 Parajuli D, Inoue K, Ohto K, et al.Reactive and Functional Polymers, 2005, 62(2), 129.
71 Gunatilakea S K, Chandrajithb R.Desalination and Water Treatment, 2017, 62, 316.
72 Jin C, Zhang X, Xin J, et al.Industrial & Engineering Chemistry Research, 2018, 57(23), 7872.
73 Siddiqui S H, Ahmad R.Groundwater for Sustainable Development, 2017, 4, 42.
74 Araújo C S T, Almeida I L S, Rezende H C, et al. Microchemical Journal, 2018, 137, 348.
75 Pathirana C, Ziyath A M, Jinadasa K, et al.Chemosphere, 2019, 48, 234.
76 Fu C, Zhang H, Xia M, et al.Ecotoxicology and Environmental Safety, 2020, 187, 109763.
77 Wu Q, Xian Y, He Z, et al.Scientific Reports, 2019, 9(1), 1.
78 Li H, Dong X, da Silva E B, et al.Chemosphere, 2017, 178, 466.
79 Yu X L, He Y.Scientific Reports, 2018, 8(1), 729.
80 Salazar-Rabago J J, Leyva-Ramos R.Journal of Environmental Management, 2016, 169, 303.
81 Zhang J, Hu X, Zhang K, et al.Journal of Colloid and Interface Science, 2019, 554, 417.
82 Ge Y, Li Z, Kong Y, et al.Journal of Industrial and Engineering Chemistry, 2014, 20(6), 4429.
83 Zhang T, Li S, Zhu X, et al.Environmental Science & Technology, 2017 51(5), 11.
84 Sud D, Mahajan G, Kaur M P.Bioresource Technology, 2008, 99(14), 6017.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[5] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[6] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[7] 张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
[8] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[9] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[10] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[11] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[12] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[13] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[14] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[15] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed