Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8020-8024    https://doi.org/10.11896/cldb.17070243
  无机非金属及其复合材料 |
改性乙炔黑对锂硫电池电化学性能的影响
郭锦1,2, 李占龙2, 连晋毅2, 闫晓燕1, 张敏刚1,2
1 太原科技大学材料科学与工程学院,先进材料研究所,太原 030024;
2 山西省新能源车辆工程技术研究中心,太原 030024
Effects of Modified Acetylene Black on Electrochemical Properties of Lithium/Sulfur Batteries
GUO Jin1,2, LI Zhanlong2, LIAN Jinyi2, YAN Xiaoyan1, ZHANG Mingang1,2
1 Institute of Advanced Materials, School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2 Shanxi Engineering Technology Research Center of New Energy Vehicle, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 5012KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用浓硝酸蒸汽改性乙炔黑(H-AB)表面,再将其与升华硫(S)通过热处理法复合制备S/H-AB复合材料。X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附仪测试结果表明,经过浓硝酸蒸汽改性后,乙炔黑不仅在表面引入羧基官能团,且孔径和比表面积均增大,硫均匀地包覆于乙炔黑表面及内部。电化学测试结果表明,通过在H-AB纳米微粒表面引入羧基强亲水性官能团,固定单质硫及多硫化锂,有效减少穿梭效应的发生,同时减小了活性物质与电解液的接触阻抗,改善硫电极的循环稳定性,提高活性物质硫的利用率。S/H-AB复合正极的放电比容量和循环性能明显优于S/AB,经过100周循环后,其放电比容量仍保持为563 mAh·g-1,远高于未经改性乙炔黑S/AB复合正极的放电比容量(406.9 mAh·g-1)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭锦
李占龙
连晋毅
闫晓燕
张敏刚
关键词:  改性乙炔黑  循环性能  复合材料  锂硫电池    
Abstract: Modified acetylene black (H-AB) was treated by concentrated nitric acid steam. Then the sulfur/H-AB composite was fabricated by thermal treatment. The results from XRD, FTIR, SEM, TEM and N2 sorption measurements indicated that the surface of acetylene black introduced carboxyl functional groups, and specific surface area and pore size all increased after treated by concentrated nitric acid steam. The sulfur particles were uniformly coated on the acetylene black surface. The electrochemical tests showed that the elemental sulfur and lithium polysulfides were fixed by introducing strong hydrophilic functional groups such as carboxyl groups. Thus the shuttle effect caused by dissolving of lithium polysulfides could be effectively inhibited. At the same time, the contact impedance between active substances and electrolytes could be reduced and the electrochemical performance of the sulfur cathode was improved. The discharge capacity and cycle performance of S/H-AB composite were better than unmodified acetylene black/sulfur composite. After 100 cycles, the discharge capacity still remained at 563 mAh·g-1, much higher than that of sulfur cathode with pristine acetylene black (406.9 mAh·g-1).
Key words:  modified acetylene black    cycling performance    composite    lithium/sulfur battery
               出版日期:  2020-04-25      发布日期:  2020-04-25
ZTFLH:  TM912  
基金资助: 太原科技大学科研启动基金(20192035);晋城市科技计划项目(20198037);山西省科技平台项目(201805D121005);山西省重点 学科建设经费资助
通讯作者:  am_lab@yeah.net   
作者简介:  郭锦,太原科技大学,讲师。2019年6月毕业于太原科技大学,材料科学与工程博士专业学位。博士期间主要从事锂硫电池正极材料的结构设计及性能研究。
张敏刚,太原科技大学,教授,博士研究生导师。2001年6月毕业于西安交通大学,材料科学与工程博士专业学位。主要从事稀土磁性材料和新能源材料的研究。在国内外期刊上发表学术论文150余篇,其中已被SCI和EI收录80余篇,授权国家发明专利5项。
引用本文:    
郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
GUO Jin, LI Zhanlong, LIAN Jinyi, YAN Xiaoyan, ZHANG Mingang. Effects of Modified Acetylene Black on Electrochemical Properties of Lithium/Sulfur Batteries. Materials Reports, 2020, 34(8): 8020-8024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17070243  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8020
1 Ma L, Hendrickson K E, Wei S, et al. Nano Today, 2015, 10(3), 315.
2 Long K, Taniguchi I. Advanced Power Technology, 2017, 28(5), 1411.
3 Yu D, Xu X H, Li Y J, et al. Materials Review A:Review Papers, 2014, 28(12), 141(in Chinese).
俞栋, 徐小虎, 李宇洁, 等. 材料导报:综述篇, 2014, 28(12), 141.
4 Peng X X, Lu Y Q, Zhou L L, et al. Nano Energy, 2016, 32, 503.
5 Seo S D, Choi C, Kim D W. Materials Letters, 2016, 172, 116.
6 Ji X L, Nazar L F. Journal of Materials Chemistry, 2010, 20, 9821.
7 Wang J G, Xie K Y, Wei B Q. Nano Energy, 2015, 15, 413.
8 Zhang N, Liu M, Chen Y. Materials Review B: Research Papers, 2016, 30(6), 52(in Chinese).
张娜, 刘敏, 陈永. 材料导报: 研究篇, 2016, 30(6), 52.
9 Yang W, Yang W, Song A, et al. Journal of Power Sources, 2017, 348, 175.
10 Kim H, Lee J T, Yushin G. Journal of Power Sources, 2013, 226, 256.
11 Zhang B, Qin X, Li G R, et al. Energy & Environmental Science, 2010, 3, 1531.
12 Yang K, Gao Q M, Tan Y L, et al. Microporous and Mesoporous Mate-rials, 2015, 204, 235.
13 Liang X, Wen Z Y, Liu Y, et al. Journal of Power Sources, 2011, 196, 3655.
14 Zhao C, Liu L, Zhao H, et al. Nanoscale, 2014, 6(2), 882.
15 Chen J Z, Wu F, Chen R J, et al. New Carbon Materials, 2013(6), 428(in Chinese).
陈君政, 吴锋, 陈人杰, 等. 新型炭材料, 2013(6), 428.
16 Choi J H, Lee C L, Park K S, et al. RSC Advances, 2014, 4(31), 16062.
17 Su Y S, Manthiram A. Chemical Communications, 2012, 48(70), 8817.
18 Jayaprakash N, Shen J, Moganty S S, et al. Angewandte Chemie, 2011, 50(26), 5904.
19 Xin S, Yin Y X, Wan L J, et al. Particle & Particle Systems Characte-rization, 2013, 30(4), 321.
20 Zhao Y, Zhu W, Zhang L L, et al. Materials Review B: Research Papers, 2016, 30(10), 7(in Chinese).
赵云, 朱文, 张丽丽, 等. 材料导报: 研究篇, 2016, 30(10), 7.
21 Xie Y, Zhao H, Cheng H, et al. Applied Energy, 2016, 175, 522.
22 Wei P, Fan M Q, Chen H C, et al. Renewable Energy, 2016, 86, 148.
23 Zhang B, Lai C, Zhou Z, et al. Electrochimica Acta, 2009, 54, 3708.
24 Chen J J, Jia X, She Q J, et al. Electrochimica Acta, 2010, 55(27), 8062.
25 Tang J J, Yang J, Zhou X Y, et al. Microporous and Mesoporous Mate-rials, 2014, 193(193), 54.
26 Ahn W, Kim K B, Jung K N, et al. Journal of Power Sources, 2012, 202, 394.
27 Qu Y H, Zhang Z A, Zhang X H, et al. Electrochimica Acta, 2014, 137, 439.
28 Peng Z H, Fang W Y, Zhao H B, et al. Journal of Power Sources, 2015, 282, 70.
29 Sun Z, Xiao M, Wang S, et al. Journal of Power Sources, 2015, 285, 478.
[1] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[2] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[3] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[4] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[5] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[6] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[7] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[8] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[9] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[10] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[11] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[12] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[13] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[14] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[15] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed