Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1203-1211    https://doi.org/10.11896/cldb.20040171
  高分子与聚合物基复合材料 |
纳米纤维素材料在功能膜材料中的应用研究进展
魏洁, 邵自强
北京理工大学材料学院,北京 100081
Research Progress in the Application Nanocellulose Materials in Functional Film Materials
WEI Jie, SHAO Ziqiang
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 6085KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 功能(薄)膜材料是具有光电、磁性、吸附、分离、刺激响应等性能的一类产品,有十分广阔的市场需求和应用前景。然而功能膜的原料多以不可再生的石油资源为原料,这一缺点限制了其发展和应用前景,因此迫切需要开发具有绿色可再生特点的替代品以满足其发展需求。纳米纤维素材料(包括通过化学方法对其进行修饰的纳米纤维素衍生物)是随着纳米技术的发展应运而生的最有潜力的绿色可再生材料之一,在提高功能膜材料性能和促进其可持续发展中扮演着重要的角色。
   纳米纤维素材料目前在食品工业、水处理行业、新能源领域、电池制造等产业的功能膜中应用广泛。其在这些功能膜中的作用和优势主要体现在以下几方面:首先,具有高结晶度、比表面积和机械强度的纳米纤维素材料通常被当作纳米填料与功能膜基体混合,以起到增强力学性能的作用,根据需求还可以使用不同尺寸、不同形貌或不同表面改性的纳米纤维素材料以提高其与基体的结合强度,从而帮助功能膜达到理想的力学性能。其次,纳米纤维素材料由于本身具有良好的成膜性,可作为功能膜的基体材料。除了单独成膜外,纳米纤维素材料也可以与其他材料复合成膜,尤其可以和其他生物质材料制成表面平滑、阻隔性能良好的生物膜材料,在包装膜应用领域有着极大的潜力。再者,纳米纤维素的高吸水性、溶胀性和一定的吸附性能对需要一定液体的润湿性功能膜(如超滤膜)性能的改善有很大的帮助。最后,纳米纤维素材料由于稳定的结构、表面改性的多样性以及良好的生物相容性的优点,可以作为良好的载体材料及骨架材料与具有特殊功能性(如光电、磁性、响应性等)的材料结合,制备具有应用价值的功能膜材料,使得纳米纤维素材料在导电膜、电池隔膜和其他功能膜中发挥越来越重要的作用。相较于传统功能膜材料,纳米纤维素材料的引入将会为功能膜在提高性能、降低成本、增加生物相容性和促进绿色环保方面带来新的活力和生机。
   基于此,本文在大量文献的基础上,总结了纳米纤维素材料在包装膜、超滤膜、导电膜、电池隔膜和其他功能膜材料中的应用研究进展,分析了纳米纤维素材料在不同功能膜中的作用机理和应用优势,对纳米纤维素材料在功能膜材料中的进一步应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏洁
邵自强
关键词:  纳米纤维素材料  功能膜  复合材料  功能与应用    
Abstract: Functional film is a kind of product with photoelectricity, magnetism, absorption, separation and the ability to response to stimulus functional properties, which shows large demand and application prospects. However, resources of functional film are mostly non-renewable fossil-based, which limits its development. Nanocellulose material (including derivatives of nanocellulose that are chemically modified) is one of the most promising materials to study regarding the development of nanotechnology, which plays an important role in improving the performance of functional film and promoting its sustainable development.
Nanocellulose material is currently widely used in functional films in the food industry, water treatment industry, new energy fields, batteries and other fields. The role and advantages of nanocellulose material in these functional films are mainly reflected in the following aspects: first, high degree of crystallization, large specific surface area and excellent mechanical properties make nanocellulose material a good candidate as a reinforcement phase to combine with matrix in forming functional films for strength enhancement. According to different demand, nanocellulose mate-rials with different sizes, morphologies or surface modification groups can be used to improve the interfacial bonding strength with the matrix, thus making the functional film to achieve ideal mechanical properties. Secondly, due to its good film-forming properties, nanocellulose material can also be used as matrix materials for functional films. In addition to film formation alone, nanocellulose materials can also be combined with other materials to form films, especially with other biomass materials to make biofilm materials with smooth surfaces and good barrier properties, which has a great impact on the expansion of packaging film applications. Next, the high water absorption, swelling and adsorption properties of nanocellulose material are helpful to improve the performance of functional films such as ultrafiltration film. Furthermore, based on the advantages of stable structure, various possibilities of surface modification and excellent biocompatibility, nanocellulose material can be utilized as good carrier mate-rials and supporting reinforcement materials combined with specific functional materials (such as photoelectric, magnetic, responsive, etc. pro-perties) to prepare functional film materials with application value, making nanocellulose material plays an increasingly important role in conductive films, battery separators and other functional films. Compared with traditional functional film materials, the introduction of nanocellulose materials will bring new vigor and vitality to functional film research area in the aspects of enhancing mechanical performance, reducing cost, better biocompatibility and environmental protection.
Therefore, based on a large amount of research references, in this paper we summarized the research application progress of nanocellulose material in packaging film, ultrafiltration film, conductive film, battery separator and other functional film, analyzed the working mechanism of nanocellulose material and its application advantages in different functional film. Furthermore, prospects for potential application of nanocellulose material in functional film materials were presented.
Key words:  nanocellulose material    functional film    composite material    property and application
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TB34  
基金资助: 北京市自然科学基金(2192050);宁夏回族自治区重点研发计划重大(重点)项目(2019BBF02015)
作者简介:  魏洁,2015年6月毕业于北京林业大学,获得工学学士学位。现为北京理工大学材料学院院博士研究生,在邵自强教授的指导下进行研究。目前主要研究领域为天然高分子纳米化及其应用研究。
邵自强,北京理工大学材料学院教授、博士研究生导师。1987年获太原理工大学机械工程学院固体推进剂专业硕士;1998年在门捷列夫化学工业大学取得博士学位。2002年被聘为教授。主要研究领域为天然高分子功能化和固体推进剂。
引用本文:    
魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
WEI Jie, SHAO Ziqiang. Research Progress in the Application Nanocellulose Materials in Functional Film Materials. Materials Reports, 2021, 35(1): 1203-1211.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040171  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1203
1 Wang H, Xu H Y, Yan H. Functional Materials Information,2006,3(1),13(in Chinese).
汪浩,徐海燕,严辉.功能材料信息,2006,3(1),13.
2 Liu F, Tao K, Du X D, et al. Chemical Production and Technology,2012,19(39),9(in Chinese).
刘富,陶慷,杜旭东,等.化工生产与技术,2012,19(39),9.
3 Geyer R, Jambeck J R, Law K L. Science Advances,2017,3(7),e1700782.
4 Klemm D, Kramer F, Moritz S, et al. Angewandte Chemie International Edtion,2011,50(24),5438.
5 Thakur V K. Cellulose-Based Graft Copolymers:Structure and Chemistry, CRC Press,US,2015.
6 Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials, De Gruyter, Germany,2012.
7 Yang L, Zhang L, Webster T J. Advanced Engineering Materials,2011,13(6),B197.
8 Dufresne A. Materials Today,2013,16(6),220.
9 Wei J, Zhou Y, Lyu Y Y, et al. ACS Sustainable Chemistry & Enginee-ring,2019,7(15),12887.
10 Zhou Y, Wei J, Lv Y Y, et al. ACS Sustainable Chemistry & Enginee-ring,2019,7(12),10690.
11 Grainger D W, Castner D G. Advanced Materials,2008,20(5),867.
12 Xing J, Tao P, Wu Z, et al. Carbohydrate Polymers,2019,207,447.
13 Gómez H. C, Serpa A, Velásquez-Cock J, et al. Food Hydrocolloids,2016,57,178.
14 Galiano F, Briceño K, Marino T, et al. Journal of Membrane Science,2018,564,562.
15 Xu X, Liu F, Jiang L, et al. ACS Applied Materials & Interfaces,2013,5(8),2999.
16 Neto W P F, Silverio H A, Vieira J G, et al. Macromolecular Symposia,2012,319(1),93.
17 Zhang Z, Wu Q, Song K, et al. ACS Sustainable Chemistry & Enginee-ring,2015,3(4),574.
18 Silverio H A, Neto W P F, Pasquini D. Journal of Nanomaterials,2013,2013,1.
19 Azeredo H M C, Rosa M F, Mattoso L H C. Industrial Crops and Pro-ducts,2017,97,664.
20 Asad M, Saba N, Asiri A M, et al. Carbohydrate Polymers,2018,191,103.
21 Li J, Zhou M, Cheng Gm, et al. Carbohydrate Polymers,2019,210,429.
22 Dufresne A. Philosophical Transactions Mathematical Physical Engineering Science,2018,376(2112),1.
23 Li Q, Chen W S, Yu H P, et al. Scientia Silvae Sinicae,2013(8),126(in Chinese).
李勍,陈文帅,于海鹏,等.林业科学,2013(8),126.
24 Wang L F, Shankar S, Rhim J W. Food Hydrocolloids,2017,63,201.
25 Yu Z L, Sun L, Wang W, et al. Industrial Crops and Products,2018,112,412.
26 Sarwar M S, Niazi M B K, Jahan Z, et al. Carbohydrate Polymers,2018,184,453.
27 Chowdhury R A, Nuruddin M, Clarkson C, et al. ACS Applied Materials & Interfaces,2018,11(1), 1376.
28 Khan A, Khan R A, Salmieri S, et al. Carbohydrate Polymers,2012,90(4),1601.
29 Dai L, Long Z, Chen J, et al. ACS Applied Materials & Interfaces,2017,9(6),5477.
30 Trovatti E, Fernandes S C M, Rubatat L, et al. Cellulose,2012,19(3),729.
31 Nguyen V T, Gidley M J, Dykes G A. Food Microbiology,2008,25(3),471.
32 Shahmohammadi Jebel F, Almasi H. Carbohydrate Polymers,2016,149,8.
33 Wang W, Yu Z L, Alsammarraie F K, et al. Food Hydrocolloids,2020,100,105441.
34 Orasugh J T, Saha N R, Sarkar G, et al. Carbohydrate Polymers,2018,188,168.
35 Orasugh J T, Saha N R, Rana D, et al. Industrial Crops and Products,2018,112,633.
36 Eliasson J. Nature,2015,517(7532),6.
37 Shannon M A, Bohn P W, Elimelech M, et al. Nature,2008,452(7185),301.
38 Zhou W Y, Bahi A, Li Y J, et al. RSC Advances,2013,3(29),11614.
39 Voisin H, Bergstrom L, Liu P, et al. Nanomaterials (Basel),2017,7(3),57.
40 Bai H L, Li S, Zhang L P. Modern Chemical Industry,2011,31(z1),142(in Chinese).
白浩龙,李帅,张力平.现代化工,2011,31(z1),142.
41 Hadi P, Yang M Y, Ma H Y, et al. Journal of Membrane Science,2019,579,162.
42 Jiang Q, Tian L, Liu K K, et al. Advanced Materials,2016,28(42),9400.
43 Xu T, Jiang Q, Ghim D, et al. Small,2018,14(15),e1704006.
44 Chen J, Hou T, Zhou J J, et al. Functional Materials,2018,49(2),02141(in Chinese).
陈进,侯婷,周建军,等.功能材料,2018,49(2),02141.
45 Malakhov A O, Anokhina T S, Petrov D A, et al. Petroleum Chemistry,2018,58,10.
46 Zhou J J, Guo Y Y, Zhang H, et al. Materials Reports B: Research Papers,2016,30(33),4(in Chinese).
周建军,郭莹莹,张欢,等.材料导报:研究篇,2016,30(33),4.
47 Qin D, Zhang D, Shao Z, et al. RSC Advances,2016,6(80),76336.
48 Lyu J, Zhang G, Zhang H, et al. Carbohydrate Polymers,2017,174,190.
49 Hao Z, Chang D, Lokendra P, et al. Bioresources,2019,3(14),7494.
50 Nystrom G, Mihranyan A, Razaq A, et al. Journal of Physical Chemistry B,2010,114(12),4178.
51 Lyu Y, Zhou Y, Shao Z, et al. Journal of Materials Science: Materials in Electronics,2019,30(9),8585.
52 Zhou J, Yuan Y, Tang J, et al. Energy Storage Materials,2019,23,594.
53 Lyu S Y, Fu F, Wang S Q, et al. Scientia Silvae Sinicae,2015,51(117),9(in Chinese).
吕少一,傅峰,王思群,等.林业科学,2015,51(117),9.
54 Sasso C, Zeno E, Petit-Conil M, et al. Macromolecular Materials and Engineering,2010,295(10),934.
55 Hu W, Chen S, Yang Z, et al. Journal of Physical Chemistry B,2011,115(26),8453.
56 Liu D Y, Sui G X, Bhattacharyya D. Composites Science and Technology,2014,99,31.
57 Wang Z, Carlsson D O, Tammela P, et al. ACS Nano,2015,9(7),7563.
58 Olivier C, Mougel J B, Bertoncini P, et al. Journal of Renewable Mate-rials,2017,6(3),237.
59 Qi H, Schulz B, Vad T, et al. ACS Applied Materials & Interfaces,2015,7(40),22404.
60 Koga H, Saito T, Kitaoka T, et al. Biomacromolecules,2013,14(4),1160.
61 Hamedi M M, Hajian A, Fall A B, et al. ACS Nano,2014,8(3),2467.
62 Wang X, Gao K Z, Shao Z Q, et al. Journal of Power Sources,2014,249,148.
63 Tian W, Vahidmohammadi A, Reid M S, et al. Advanced Materials,2019,31,e1902977.
64 Septevani A A, Evans D A C, Hosseinmardi A, et al. Small,2018,14(46),e1803439.
65 Oun A A, Shankar S, Rhim J W. Critical Reviews in Food Science and Nutrition,2020,60(3),435.
66 Schutz C, Sort J, Bacsik Z, et al. PLoS One,2012,7(10),e45828.
67 Roig-Sanchez S, Jungstedt E, Anton-Sales I, et al. Nanoscale Horiz,2019,4(3),634.
68 Qin Y, Yi J N, Wu Y Q, er al. Scientia Silvae Sinicae,2018,54(3),134(in Chinese).
卿彦,易佳楠,吴义强,等.林业科学,2018,54(3),134.
69 Zhou S, Nyholm L, Stromme M, et al. Accounts of Chemical Research,2019,52(8),2232.
70 Zhang T, Yang L, Yan X, et al. Small,2018,14(47),e1802444.
71 Lasrado D, Ahankari S, Kar K. Journal of Applied Polymer Science,2020,48959.
72 Chiappone A, Nair J R, Gerbaldi C, et al. Journal of Power Sources,2011,196(23),10280.
73 Liu C T, Shao Z Q, Wang J Q, et al. RSC Advances,2016,6(100),97912.
74 Wang Z, Pan R, Xu C, et al. Energy Storage Materials,2018,13,283.
75 Pan R J, Sun R, Wang Z H, et al. Nano Energy,2019,55,316.
76 Kim H, Guccini V, Lu H R, et al. ACS Applied Energy Materials,2019,2(2),1241.
77 Hänninen A, Sarlin E, Lyyra I, et al. Carbohydrate Polymers,2018,202,418.
78 Yang Q, Zhang C, Shi Z, et al. ACS Applied Nano Materials,2018,1(9),4972.
79 Song N, Jiao D J, Ding P, et al. Journal of Materials Chemistry C,2016,4(2),305.
80 Uetani K, Okada T, Oyama H T. Journal of Materials Chemistry C,2016,4(41),9697.
81 Yan C, Wang J, Kang W, et al. Advanced Materials,2014,26(13),2022.
82 Wang Y, Shao Z, Wang F, et al. European Polymer Journal,2017,86,85.
[1] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[2] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[3] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[4] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[5] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[6] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[7] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[8] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[9] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[12] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[13] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[14] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[15] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed