Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17105-17114    https://doi.org/10.11896/cldb.19090150
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
超亲水/水下超疏油膜功能材料及其研究进展
徐兰芳, 王锋, 于英豪, 涂伟萍
华南理工大学化学与化工学院,广州510641
Research Progress on Superhydrophilic/Underwater Superoleophobic Functional Membrane Materials
XU Lanfang, WANG Feng, YU Yinghao, TU Weiping
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 6902KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 含油污水,特别是油/水乳液的分离是世界性的挑战。膜分离法由于具有分离效率高、能耗低、易于操作等特点,在油水分离领域具有较大的优势。超亲水/水下超疏油材料是“除水型”特殊润湿性材料,与超疏水-超亲油网膜相比,超亲水/水下超疏油膜在对抗有机污染和生物污染方面更具优势。
   超亲水/水下超疏油膜在处理含油污水过程中面临的主要问题有化学稳定性及膜污染。膜污染会导致分离效率及过滤通量下降等问题,缩短膜的使用寿命。因此,解决滤膜污染问题对污水处理至关重要。目前超亲水/水下超疏油材料改性的重点主要有三方面:提高过滤通量、抗污能力及设计合适的孔径。
   许多研究人员通过对疏水性基材(聚合物膜、金属筛网)进行改性以增强膜的亲水性和抗污性能,并取得了丰硕的成果。目前,聚合物膜改性方法主要分为基体改性和表面改性两种。基体改性即通过接枝共聚或共混等方法对膜进行亲水改性,然后将改性后的膜材料用于膜制备。表面改性是指对商业滤膜表面接枝极性单体或亲水单体。金属筛网常用的改性方法有化学刻蚀、表面涂覆、电化学沉积等。通过改变膜表面的化学组成和粗糙度调控滤膜的超润湿性能,从而提高膜的亲水性、分离效率和抗污性能。为了响应处理工业溢油及保护环境的要求,迫切需要开发具有高分离效率、高选择性和高稳定性的新型分离材料和技术,以应对日趋复杂的油水分离环境。
   本文以分离油水混合物及油水乳液的滤膜材料作为研究体系,首先介绍了超亲水/水下超疏油表面的理论基础及其构筑机理,然后从不同基材的角度介绍了油水分离功能材料的制备工艺及改性方法。本文全面综述了超亲水/水下超疏油金属网膜、聚合物膜材料和基于纳米材料的新型功能分离膜的研究进展,从润湿性、过滤通量、分离效率、抗污性能等方面综合评估了油水分离功能膜的性能,最后总结和展望了油水功能分离膜未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐兰芳
王锋
于英豪
涂伟萍
关键词:  过滤膜  超亲水  水下超疏油  油/水分离  亲水改性    
Abstract: Separation of oily wastewater, especially oil/water emulsions, is a worldwide challenge. Since membrane separation technology has high separation efficiency, low energy consumption and simple operation process, it has great advantages in the treatment of oily water. Superhydrophilic/underwater superoleophobic membrane is “water-removing” material with special wettability. Compared with superhydrophobic-supe-roleophilic membrane, superhydrophilic/underwater superoleophobic membrane is more resistant to organic pollution and biological pollution.
The disadvantages of filter membranes are chemical stability and membrane fouling. Membrane fouling will lead to reduction of separation efficiency, flux decline, shorter service life. Therefore, alleviating membrane pollution is essential to wastewater treatment. The focuses of hydrophilic modification are increasing filtration flux, improving anti-fouling ability and designing appropriate pore size.
Many researchers modified substrate through different methods to improve the hydrophilicity and anti-fouling capacity. Up till now, fruitful achievements have been received. Modification methods of polymer membrane are mainly divided into two types: bulk modification and surface modification. Bulk modification means hydrophilic modification on membranes including graft copolymerization or blending. Surface modification refers to the grafting of polar or hydrophilic monomers on the surface of commercial filter membranes. Hydrophilic modification methods for metal meshes include chemical etching, surface coating, electrochemical deposition and et al. By changing the chemical composition and roughness of the membrane surface, hydrophilicity, separation efficiency and anti-fouling performance can be greatly improved. In order to deal with industrial oil spills and protect the environment, it is urgent to develop new separation materials and technologies with high separation efficiency, high selectivity and stable performance.
Filter membrane is the research object of the article. Firstly, the theory and construction mechanism of superhydrophilic/underwater superoleophobic surface are introduced. Then, preparation and modification methods of filter membrane are comprehensively discussed based on different types of substrates. Recent advances of superhydrophilic/underwater superoleophobic metal membranes, polymer-dominated membranes and new functional separation membrane based on nanomaterials are comprehensively introduced. The performance of the oil/water membrane is comprehensively evaluated from the aspects of wettability, filtration flux, separation efficiency and antifouling ability. Finally, the future deve-lopment trend of oil/water filter membrane is summarized and prospected.
Key words:  filter membrane    superhydrophilic    under water superoleophobic    oil/water separation    hydrophilic modification
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  TB383  
基金资助: 广东省自然科学基金(2018A030313235);广东省绿色化学产品技术重点实验室开放基金(GC201813)
通讯作者:  fengwang@scut.edu.cn   
作者简介:  徐兰芳,2018年6月毕业于江南大学,获得理学学士学位。现为华南理工大学先进化学与化工学院研究生,在助理研究员王锋的指导下进行研究。目前主要研究领域为超亲水/水下超疏油功能膜材料及光固化涂料。
王峰,助理研究员,2008年在华南理工大学化学与化工学院获得了博士学位。 2008年起在华南理工大学化学化工学院任教。目前主要从事包括用于水处理的纳米材料,有机和无机杂化材料的改性的研究工作。近年来,发表SCI/EI收录的科研论文30多篇,获得授权的国家发明专利40多项。
引用本文:    
徐兰芳, 王锋, 于英豪, 涂伟萍. 超亲水/水下超疏油膜功能材料及其研究进展[J]. 材料导报, 2020, 34(17): 17105-17114.
XU Lanfang, WANG Feng, YU Yinghao, TU Weiping. Research Progress on Superhydrophilic/Underwater Superoleophobic Functional Membrane Materials. Materials Reports, 2020, 34(17): 17105-17114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090150  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17105
1 Khemakhem I, Gargouri O D, Dhouib A, et al.Separation & Purification Technology, 2017, 172(1), 310.
2 Drioli E, Romano M.Industrial & Engineering Chemistry Research, 2001, 40(5),1277.
3 Jiang Y S, Hou J W, Xu J, et al. Carbon, 2017, 115(5), 477.
4 LiuY, Su Y, Zhao X, et al. Journal of Membrane Science, 2016, 499(2), 406.
5 Qu M N, Ma L L, He J M, et al. Materials Review A: Review Papers, 2017, 31(10), 155(in Chinese).
屈孟男, 马利利, 何金梅, 等. 材料导报:综述篇, 2017, 31(10), 155.
6 Yang Z S, Li L, Zhang L, et al.Chemical Industry and Engineering Progress, 2014, 33(11), 3082 (in Chinese).
杨振生, 李亮, 张磊, 等. 化工进展, 2014, 33(11), 3082.
7 Darvishi M, Foroutan M.RSC Advances, 2016, 6(78), 74124.
8 Zhao P, Qin N, Ren C L, et al.Applied Surface Science, 2019, 481(2), 883.
9 Cao S, Fang Q, Chen X, et al. Journal of Applied Polymer Science, 2017, 135(12),45923.
10 Seda S, Nigmet U.Environmental Science and Pollution Research, 2018, 25(25), 25315.
11 Liu N, Chen Y, Lu F, et al.The Journal of Physical Chemistry A, 2013, 14(15), 3489.
12 Xue Z, Wang S, Lin L, et al. Advanced Materials, 2011, 23(37), 4270.
13 Kang H, Cheng Z, Lai H, et al.Separation and Purification Technology, 2018, 201(7), 193.
14 Hou Y, Li R, Liang J.Separation and Purification Technology, 2018, 192(9), 21.
15 Ma Q, Cheng H, Fane A G, et al.Small, 2016, 12(16), 2186.
16 Wang Y J, Gong X.Journal of Materials Chemistry A, 2017, 5(8), 3759.
17 Chen W, Su Y, Peng J, et al.Advanced Functional Materials, 2011, 21(1), 191.
18 Rana D, Matsuura T.Chemical Reviews, 2010, 110(4), 2448.
19 Zeng X J, Wang L, Pi P H, et al. Progress in Chemistry, 2018, 30(1), 73(in Chinese).
曾新娟, 王丽, 皮丕辉, 等. 化学进展, 2018, 30(1), 73.
20 Peng Y B, Guo Z G.Journal of Materials Chemistry A, 2016, 4(41), 15749.
21 Meng G, Peng H, Wu J, et al.Fibers and Polymers, 2017, 18(4),706.
22 Barry E, Mane A U, Libera J A, et al. Journal of Materials Chemistry A, 2017, 5(6), 2929.
23 Yuan J, Liao F F, Guo Y N, et al. Progress in Chemistry, 2019, 31(1), 156(in Chinese).
袁静, 廖芳芳, 郭雅妮, 等. 化学进展, 2019, 31(1), 156.
24 Zhang S , Lu F , Tao L , et al.ACS Applied Materials & Interfaces, 2013, 5(22), 11971.
25 Wang B, Li J, Wang G, et al. ACS Applied Materials & Interfaces, 2013, 5(5),1827.
26 Qing W X, Xue J Q, Rui H L I , et al. Journal of Chongqing University of Technology (Natural Science), 2017, 31(6), 1674.
27 Wen G, Guo Z G, Liu W.Nanoscale, 2017, 9(1), 3338.
28 Nosonovsky M, Bhushan B. Nano Letters, 2007, 7(9), 2633.
29 Zhang X, Tian J, Gao S, et al.Journal of Membrane Science, 2017, 527, 26.
30 Liu N C, Yao G P, Huang H.Polymer, 2000, 41(12), 4537.
31 Dang C, Liu L B, Xiang Y, et al. Chemical Industry and Engineering Progress, 2016, 35(S1), 216(in Chinese).
党钊, 刘利彬, 向宇, 等. 化工进展, 2016, 35(S1), 216.
32 Ismail N, Salleh W, Ismail A.Separation and Purification Technology, 2020, 233(15), 116007.
33 Brown P S, Bhushan B.Scientific Reports, 2015, 5(1), 8701.
34 Conte P, Darmanin T, Guittard F.Reactive and Functional Polymers, 2014, 74(1), 46.
35 Wu J, Wei W, Zhao S, et al.Journal of Materials Science, 2017, 52(2),1194.
36 Zhang F, Zhang W B, Shi Z, et al.Advanced Materials, 2013, 25(30), 4192.
37 Cheng Z, Wang J, Lai H, et al.Langmuir, 2015, 31(4),1393.
38 Zhou C L, Zhao A, Cheng J, etal. Materials Letters, 2016,185, 403.
39 Zhang S, Jiang G, Gao S, et al.ACS Nano, 2018, 12 (1), 795.
40 Yang J, Zhang Z, Xu X, et al.Journal of Materials Chemistry, 2012, 22(7), 2834.
41 Hou K, Zeng Y, Zhou C, et al. Applied Surface Science, 2017, 416(9), 344.
42 Yang X H, Wang Z Y, Cao J J, et al. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6), 237(in Chinese).
杨显猴, 王自远, 曹静静, 等. 高校化学工程学报, 2018, 32(6), 237.
43 Yang J, Song H, Yan X, et al.Cellulose, 2014, 21(3),1851.
44 You Q, Ran G, Wang C, et al.Journal of Coatings Technology and Research, 2018, 15(5), 1013.
45 Liu M, Li J, Hou Y, et al.ACS Nano, 2017, 11(1), 1113.
46 Chen Z, Zhou C, Lin J, et al. Journal of Sol-Gel Science and Technology, 2018, 85(1), 23.
47 Gao S J, Shi Z, Zhang W B, et al.ACS Nano, 2014, 8(6),6344.
48 Hashim N A , Liu F , Li K.Journal of Membrane Science, 2009, 345(1-2),134.
49 Asatekin A, Mayes A M.Environmental Science & Technology, 2009, 43(12), 4487.
50 Sagle A C, Wagner E M V, Ju H, et al.Journal of Membrane Science, 2009, 340(1-2), 92.
51 Yu Z Y. Praparation of high-performance oil-water separation materials and performance research.Master's Thesis, Qingdao University of Science and Technology, China, 2015(in Chinese).
余子涯.高性能油水分离材料的制备及性能研究. 硕士学位论文,青岛科技大学, 2015.
52 Fan J B, Song Y, Wang S, et al.Advanced Functional Materials, 2015, 25(33), 5368.
53 He K, Duan H, Chen G Y, et al. ACS Nano, 2015, 9(9), 9188.
54 Wu Y L, Li G J, Liu Y H, et al. Journal of Chemical Engineering of Chinese Universities, 2014, 35(7), 1484(in Chinese).
吴雅露, 李光吉, 刘云鸿, 等. 高等学校化学学报, 2014, 35(7), 1484.
55 Xie W, Li J, Sun, T, et al.Environmental Science and Pollution Research, 2018, 25(25), 25227.
56 Yuan T, Chen T, Zhou X H, et al. Journal of Chemical Industry and Engineering, 2014, 65(6), 1943(in Chinese).
袁腾, 陈卓, 周显宏, 等. 化工学报, 2014, 65(6), 1943.
57 Masuelli M, Marchese J, Ochoa N A. Journal of membrane science, 2009, 326(2), 688.
58 Ochoa N A, Masuelli M, Marchese J.Journal of Membrane Science, 2003, 226(1-2), 203.
59 Murphy E, Lu J, Brewer J, et al. Langmuir, 1999, 15(4),1313.
60 Ma X, Su Y, Sun Q, et al.Journal of Membrane Science, 2007, 292(1-2), 116.
61 Revanur R, Mccloskey B, Breitenkamp K, et al. Macromolecules, 2007, 40(10), 3624.
62 Chen W, Su Y, Peng J, et al. Advanced Functional Materials,2011, 21(1), 191.
63 Wang G, Yang L, Chen Z, et al.Desalination, 2014, 338(1), 49.
64 Celik E, Park H, Choi H, et al.Water Research, 2011, 45(1), 274.
65 Balta S, Sotto A, Luis P, et al.Journal of Membrane Science, 2012, 389, 155.
66 Chen W, Su Y, Peng J, et al.Advanced Functional Materials, 2011, 21(1), 191.
67 Ahmad A L, Majid M A, Ooi B S.Desalination, 2011, 268(1-3), 266.
68 Yi X S, Yu S L, Shi W X, et al.Desalination, 2011, 281, 179.
69 Li H, Yin Y, Zhu L, et al.Journal of Hazardous Materials, 2019, 373(7), 725.
70 Yang H C, Chen Y F, Ye C, et al. Progress in Chemistry, 2015, 27(8),1014(in Chinese).
杨皓程, 陈一夫, 叶辰, 等. 化学进展, 2015, 27(8),10144.
71 Lee H S, Im S J , Kim J H , et al.Desalination, 2008, 219(1-3), 48.
72 Liu M, Li J, Guo Z.Journal of Colloid and Interface Science, 2016, 467(10), 261.
73 Ma Q, Cheng H, Fane A, et al.Small, 2016, 12(16),2186.
74 Kim D G , Kang H , Han S , et al.RSC Advances, 2013, 3(39),18071.
75 Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318(5849),426.
76 Zin G, Wu J, Rezzadori K, et al. Separation and Purification Technology, 2019, 212(4), 641.
77 Shi H, He Y, Pan Y, et al.Journal of Membrane Science, 2016, 506(5), 60.
78 Zhang W B, Zhu Y Z, Liu X, et al.Angewandte Chemie International Edition, 2014, 126(3), 856.
79 Wang Z, Ji S, He F, et al. Journal of Materials Chemistry A, 2018, 6(8), 3391.
80 Xue Z, Cao Y, Liu N, et al.Journal of Materials Chemistry A, 2014, 2(8),2445.
81 Striemer C C, Gaborski T R, Mcgrath J L, et al.Nature, 2007, 445(7129),749.
82 Shi Z, Zhang W, Zhang F, et al.Advanced Materials, 2013, 25(17),2422.
83 Liu N, Zhang M, Zhang W, et al.Journal of Materials Chemistry A,2015, 3(40), 20113.
84 Zhu Y Z, Wang D, Jiang L,et al. NPG Asia Materials, 2014,6(5),1.
85 Long Y , Hui J F , Wang P P, et al.Scientific Reports, 2012, 2, 612.
86 Liu Y, Su Y, Cao J, et al.Nanoscale, 2017, 9(22), 7508.
87 Yang X, He Y, Zeng G, et al.Journal of Materials Science, 2016, 51(19), 8965.
88 Yang X, He Y, Zeng G, et al. Chemical Engineering Journal, 2017, 321,245.
89 W P P, Ma J, Wang Z H, et al.Langmuir, 2012, 28(10), 4776.
90 Liu Y, Su Y, Cao J, et al.Journal of Membrane Science, 2017, 542(15), 254.
91 Chan W F, Chen H Y, Surapathi A, et al.ACS Nano, 2013, 7(6), 5308.
[1] 高丰, 王会才, 任瑞丽. 超亲水-超疏油油水分离材料的研究进展[J]. 材料导报, 2020, 34(13): 13022-13027.
[2] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[3] 屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed