Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13022-13027    https://doi.org/10.11896/cldb.19070113
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
超亲水-超疏油油水分离材料的研究进展
高丰1, 王会才2, 徐征2, 任瑞丽2
1 天津工业大学环境科学与工程学院,天津 300387
2 天津工业大学化学与化学工程学院,天津 300387
Progress of Superhydrophilic-Superoleophobic Materials for Oil-Water Separation
GAO Feng1, WANG Huicai2, XU Zheng2, REN Ruili2
1 School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
2 School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 3183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于工业的快速发展及远洋石油泄漏事故的频繁发生,含油废水的处理成为当今一大热点问题。因此,迫切需要研究出一种高效、低成本、可重复使用的高性能油水分离材料。近年来,受荷叶自洁性、鱼鳞水下超抗油污、玫瑰花超疏水性等的启发,人们开发了大量的超亲油-超疏水型及超亲水-水下超疏油型油水分离材料,但这些材料还存在以下缺点:(1)由于材料的亲油性,其孔道易被油污堵塞,分离效率会大幅降低;(2)水的密度一般比油大,进行油水分离时,通常需要外加能量。随后,学者通过对材料表面化学成分及表面粗糙结构进行深入研究,开发出一种更先进的超亲水-超疏油材料,其具有隔油透水性,在处理含油废水时呈现出防油污、高通量、高效率、可重复使用的优点;此外,由于其具有亲水性,仅在重力作用下即可完成油水分离,具有重要的实际应用意义。
根据表面能原理可知,超疏油表面往往也超疏水,因此要合成超亲水-超疏油材料十分困难。早期研究者认为有以下三种理论可以解释超亲水-超疏油表面形成的原因:(1)超亲水-超疏油表面是由极性液体与非极性液体在表面的润湿性差异实现;(2)水的作用力诱导表面分子重排;(3)油滴较大被表面疏油组分阻挡,水滴较小可穿透疏油层到达亲水区域。这三种理论的提出加快了超亲水-超疏油表面的研究进程,但并未形成系统的理论体系。近年来,研究者发现材料表面能由极性分量与色散分量组成,因此他们提出可以通过控制这两种因素来调控材料表面的润湿性。该系统理论的提出加速了超亲水-超疏油材料的发展,为未来该类材料的发展与设计提供了理论依据。
本文首先介绍了超润湿的基础理论、油水分离机理,然后综述了超亲水-超疏油材料制备的四种理论,总结了近几年超亲水-超疏油材料的特点及在油水分离方面的应用。最后针对该领域存在的问题,提出了解决方法并展望了其未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
GAO Feng
WANG Huicai
XU Zheng
REN Ruili
关键词:  油水分离  超疏油  超亲水  油水混合物    
Abstract: Due to the rapid development of industry and the frequent occurrence of ocean oil spill accidents, the treatment of oily waste water is a hot issue today. Therefore, there is an urgent need to prepare an efficient, low-cost, reusable high-performance oil-water separation materials. Recently, inspired by the self-cleaning of lotus leaf, super-oil-resistance of fish scales, superhydrophobic of roses, researchers have developed a large number of superoleophilic-superhydrophobic and superhydrophilic-underwater superoleophobic oil-water separation materials. However, these materials have the following disadvantages: (ⅰ) due to the lipophilic nature of the material, the material pores are easily blocked by oil pollution, and the separation efficiency decreases rapidly; (ⅱ) the density of water is generally larger than that of oil, and additional energy is required for oil-water separation. Subsequently, through the in-depth study on the chemical composition and rough structure of the material surface, scholars developed a more advanced superhydrophilic-superoleophobic material, which has the advantages of anti-oil pollution, high flux, high efficiency and reusable in the treatment of oily wastewater. In addition, because of its hydrophilicity, oil-water separation can be completed only under the action of gravity, which has important practical significance.
According to the surface energy principle, superoleophobic surfaces are often superhydrophobic, so it is difficult to synthesize superhydrophilic-superoleophobic materials. Early researchers thought that there were three theories to explain the formation of superhydrophilic-superhydrophobic surfaces: (ⅰ) the superhydrophilic-superhydrophobic surface is realized by the difference of surface wetting between polar and non-polar liquids; (ⅱ) the induction of water force surface molecular rearrangement; (ⅲ) it is considered that the oil droplets are largely blocked by the surface oleophobic component, and the smaller water droplets can penetrate the oleophobic layer to reach the hydrophilic region. The proposition of these three theories has accelerated the research process of superhydrophilic-superoleophobic surfaces, but has not formed a systematic theoretical system. In recent years, researchers have found that the surface energy of materials consists of polarity and dispersion force components, so they propose that the wettability of the material surface can be adjusted by controlling these two factors. The proposed system theory accelerates the development of superhydrophilic-superoleophobic materials and provides a theoretical basis for their future development and design.
In this paper, the basic theory of superwetting and the mechanism of oil/water separation are introduced. Then, we review four theories of superhydrophilic-superoleophobic material preparation. Moreover, we summarize the characteristics of superhydrophilic-superoleophobic materials and their application in oil-water separation in recent years. Finally, according to the problems in this field, solutions are proposed and the future development direction is prospected.
Key words:  oil-water separation    superoleophobic    superhydrophilic    oil-water mixture
               出版日期:  2020-07-10      发布日期:  2020-06-24
ZTFLH:  O648  
通讯作者:  wanghc@nankai.edu.cn   
作者简介:  高丰,2018年6月毕业于洛阳理工学院,获得工学学士学位。现为天津工业大学环境科学与工程学院硕士研究生,在王会才副教授的指导下进行研究。目前主要研究领域为环境功能材料。
王会才,天津工业大学化学与化工学院副教授、硕士研究生导师。2001年7月本科毕业于长春工程学院,2007年9月在浙江大学高分子化学与物理专业取得博士学位,2007—2010年在南开大学进行博士后研究工作,2013年入选天津市“131”创新型人才培养工程第三层次,并入选天津市高校“优秀青年教师资助计划”, 2017年入选天津市高校“中青年骨干创新人才培养计划”,2017—2018年在牛津大学访问。主要从事功能材料及其在电化学检测、新能源材料以及环境领域中的应用研究工作。近年来,发表论文30余篇,包括Biosensor & Bioelectronics, Sensors and Actuators B:Chemical, Talanta, Electrochimica Acta, Chemical Engineering Journal等,授权发明专利6项。
引用本文:    
高丰, 王会才, 任瑞丽. 超亲水-超疏油油水分离材料的研究进展[J]. 材料导报, 2020, 34(13): 13022-13027.
GAO Feng, WANG Huicai, XU Zheng, REN Ruili. Progress of Superhydrophilic-Superoleophobic Materials for Oil-Water Separation. Materials Reports, 2020, 34(13): 13022-13027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070113  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13022
1 Ge J, Zhao H Y, Zhu H W, et al. Advanced Materials, 2016, 28(47), 10459.
2 Ma Q, Cheng H, Fane A G, et al. Small, 2016, 12(16), 2186.
3 Gupta R K, Dunderdale G J, England M W, et al. Journal of Materials Chemistry A, 2017, 5(31),16025.
4 Wu Y, Xue S, Yang H, et al. Chemical Engineering Journal, 2017, 328,639.
5 Wu Y, Zhang T, Xu Z, et al. Journal of Materials Chemistry A, 2015, 3(5),1906.
6 Wang B, Liang W, Guo Z, et al.Chemical Society Reviews, 2015, 44(1),336.
7 Chu Z, Feng Y, Seeger S.Angewandte Chemie-International Edition, 2015, 54(8), 2328.
8 Feng L, Zhang Z, Mai Z, et al. Angewandte Chemie-International Edition, 2004, 43(15), 2012.
9 Liu M, Wang S, Wei Z, et al. Advanced Materials, 2009, 21(6),665.
10 Ge M, Cao C, Huang J, et al. Nanoscale Horizons, 2018, 3(3),235.
11 Guselnikova O, Elashnikov R, Postnikov P, et al. ACS Applied Materials & Interfaces, 2018, 10(43),37461.
12 Song H M, Chen C, Shui X X, et al. Journal of Membrane Science, 2019, 573,126.
13 Yang J, Yin L, Tang H, et al. Chemical Engineering Journal, 2015, 268,245.
14 He K, Duan H, Chen G Y, et al. ACS Nano, 2015, 9(9), 9188.
15 Zhang W, Zhu Y, Liu X, et al. Angewandte Chemie-International Edition, 2014, 53(3),856.
16 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
17 Wenzel R N. Journal of Physical & Colloid Chemistry, 1948, 53,1466.
18 Cassie A B D, Baxter S. Transactions of the Fraday Society, 1944, 40, 546.
19 Li J, Jing Z, Zha F, et al. ACS Applied Materials & Interfaces, 2014, 6(11),8868.
20 Zhang Y, Chen Y, Shi L, et al. Journal of Materials Chemistry, 2012, 22(3),799.
21 Yang J, Zhang Z, Xu X, et al. Journal of Materials Chemistry, 2012, 22(7),2834.
22 Yang J, Song H, Yan X, et al. Cellulose, 2014, 21(3),1851.
23 Kim B S, Harriott P. Journal of Colloid and Interface Science, 1987, 115, 1.
24 Pan S, Guo R, Xu W. Aiche Journal, 2014, 60(8), 2752.
25 Saito T, Tsushima Y, Sawada H. Colloid and Polymer Science, 2014, 293(1), 65.
26 Okada A, Nikaido T, Ikeda M, et al. Dental Materials Journal,2008, 27(4), 565.
27 Kota A K, Kwon G, Choi W, et al. Nature Communications, 2012, 3, 1.
28 Zhou H, Wang H, Yang W, et al. RSC Advances, 2018, 8(47),26939.
29 Xu Z, Zhao Y, Wang H, et al. Angewandte Chemie-International Edition, 2015, 54(15), 4527.
30 Brown P S, Bhushan B. Scientific Reports, 2015, 5, 1.
31 Tang H, Fu Y, Yang C, et al.RSC Advances, 2016, 6(94), 91301.
32 Owens D K, Wendt R C. Journal of Applied Polymer Science, 1969, 13(8), 1741.
33 Fowkes F M. Industrial & Engineering Chemistry, 1964, 56(12), 40.
34 Pan Y, Huang S, Li F, et al. Journal of Materials Chemistry A, 2018, 6(31), 15057.
35 Yong J, Chen F, Yang Q, et al. Chemical Society Reviews, 2017, 46(14), 4168.
36 Liu T L, Kim C J. Science, 2014, 346(6213), 1096.
37 Yong J, Chen F, Yang Q, et al. Chemical Communication, 2015, 51(48), 9813.
38 Xiong L, Guo W, Alameda B M, et al. ACS Omega, 2018, 3(8), 10278.
39 Li F, Wang Z, Huang S, et al. Advanced Functional Materials, 2018, 28(20), 1706867.
40 Zhou W. The preparation and properties of oil/water separation materials with special wettability. Master’s Thesis, South China University of Technology, China, 2017(in Chinese).
周伟. 基于特殊润湿性的油水分离材料的制备和性能研究.硕士学位论文,华南理工大学, 2017.
[1] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[2] 梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
[3] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[4] 屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed