Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4132-4136    https://doi.org/10.11896/cldb.19010183
  高分子与聚合物基复合材料 |
种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用
杨福生1, 张妍1, 刘小斌1, 陈永哲1, 杨武2,3
1 兰州工业学院汽车工程学院,兰州 730050;
2 西北师范大学化学化工学院,兰州 730070;
3 西北师范大学化学化工学院生态环境相关高分子材料教育部重点实验室,兰州 730070
Construction of Superhydrophobic-Superoleophilic Filter Paper by Seed Growing Method and Its Application in Oil-water Separation
YANG Fusheng1, ZHANG Yan1, LIU Xiaobin1, CHEN Yongzhe1, YANG Wu2,3
1 College of Automotive Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China;
2 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China;
3 Ministry of Education,Key Laboratory of Ecological-environment-related Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 3852KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,原油和工业有机溶剂的泄漏严重破坏了生物赖以生存的生态环境。为了净化被油污染的水域,寻求一种快速、高效的油水分离材料迫在眉睫。利用原位还原法和种子生长法在滤纸表面自组装一层纳米银颗粒,经十二烷基硫醇接枝改性降低其表面能,成功制备具有耐化学腐蚀、热稳定性好、油水分离特性优异的超疏水-超亲油滤纸。采用扫描电子显微镜、X射线衍射仪、接触角测试仪对超疏水-超亲油滤纸进行表征,结果表明水滴在其表面的最大接触角为155°,滚动角小于5°,而油滴能瞬间透过滤纸,对各种油水混合液具有较高的分离能力,油水分离效率高达88%,分离后对收集的油进行红外光谱分析,并没有检测到明显的水峰。超疏水-超亲油滤纸制备过程简易、纳米银和滤纸之间的粘附力强,在油水分离中有较好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨福生
张妍
刘小斌
陈永哲
杨武
关键词:  滤纸  超疏水  超亲油  油水分离    
Abstract: In recent years, the leakage of crude oil and industrial organic solvents has seriously damaged the ecological environment where the orga-nisms live. It was urgent to purify the water polluted by oil and search for a fast and efficient oil-water separation material. In this paper, a la-yer of silver nanoparticles was assembled on the surface of filter paper by in-situ reduction method and seed growth method, its surface energy was reduced by grafting modification of dodecyl thiol and the superhydrophobic-superoleophilic filter paper with chemical corrosion resistance, thermal stability and excellent oil-water separation characteristics was successfully prepared. The superhydrophobic-superoleophilic filter paper was characterized by scanning electron microscope, X-ray diffractometer and contact angle tester. The results show the maximum contact angle of water droplet on the surface is 155°, rolling angle is less than 5°,the oil droplets can instantly through the filter paper, having high capacity of separation a variety of oil-water mixture, and oil-water separation efficiency is as high as 88%. Meanwhile,the oil which has been separated from water was analyzed by infrared spectrum, and there is no clear water peak was detected. So superhydrophobic-superoleophilic filter paper has a good application prospect in oil-water separation,because its preparation process was simple and the adhesion between silver nanometer and filter paper was strong.
Key words:  filter paper    superhydrophobic    superoleophilic    oil-water separation
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG174.451  
  O647.5  
基金资助: 国家自然科学基金(20873101);甘肃省高等学校创新能力提升项目(2019A-139);兰州工业学院青年科技创新项目(19K-012)
通讯作者:  2313907790@qq.com   
作者简介:  杨福生,2013年6月毕业于西北师范大学,获得理学硕士学位。于2014年10月至今在兰州工业学院任教,主要从事功能材料领域的研究;杨武,西北师范大学,教授,博士研究生导师。1998年7月毕业于中国科学兰州化学物理研究所,获理学博士学位。德国马普高分子研究所(美因兹)博士后。主要从事纳米材料、功能材料的制备、表征以及应用研究。发表SCI收录100余篇,申报发明专利8余项,出版专著2部,教材1部。
引用本文:    
杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
YANG Fusheng, ZHANG Yan, LIU Xiaobin, CHEN Yongzhe, YANG Wu. Construction of Superhydrophobic-Superoleophilic Filter Paper by Seed Growing Method and Its Application in Oil-water Separation. Materials Reports, 2020, 34(4): 4132-4136.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010183  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4132
1 Li W T, You J L, Yang Q, et al. Acta Physic-Chimica Sinica, 2018, 34(5), 456(in Chinese).
李文涛, 雍佳乐, 杨青, 等. 物理化学学报, 2018, 34(5), 456.
2 Li Q, Ding Q F, Liu X, et al. Journal of Engineering Thermophysics, 2018, 39(2), 341(in Chinese).
李群, 丁秋夫, 刘鑫, 等. 工程热物理学报, 2018, 39(2), 341.
3 Carrier G, Fendell F, Mitchell J. Combust Flame, 1992, 90(3-4), 295.
4 Toyoda M, Inagaki M. Carbon, 2000, 38(99), 199.
5 Gao J F, Song X, Huang X. Applied Surface Science, 2018, 439(1), 394.
6 Xiao J L, Lv W Y, Song Y H, et al. Chemical Engineering Journal, 2018, 338(15), 202.
7 Lin Y M, Greory C R. Journal of Membrane Science, 2018, 56(1), 247.
8 Nordvik A B. Spill Science & Technology Bulletin, 1999, 5(5), 309.
9 Toura R, Ali R, Tahereh D, et al. Functional & Integrative Genomics, 2018, 18(5), 533.
10 Chen Q H, Liu C H. China Surface Engineering, 2018, 31(1), 148(in Chinese).
程千会, 刘长松, 等. 中国表面工程, 2018, 31(1), 148.
11 Qu M N, Ma L L, He J M, et al. Materials Review A:Review Papers, 2017, 31(10), 152(in Chinese).
屈孟男, 马利利, 何金梅, 等. 材料导报:综述篇, 2017, 31(10), 152.
12 An Y P, Yang J, Yang H C, et al. ACS Applied Materials Interfaces, 2018, 10(11), 9832.
13 Patchiya P, Prasert R, Suwadee K, et al. Carbohydrate Polymers, 2018, 190(15), 184.
14 Lou L L, Chen X L, Wang Y, et al. Ceramics International, 2018, 44(11), 12021.
15 Arbatan T, Fang X Y, Shen W. Chemical Engineering Journal, 2011, 166(2), 787.
16 Jin J, Zhao X L, Du Y H, et al. Science, 2018, 6, 289.
17 Fu J, Qiu L. Langmuir, 2017, 33(43), 12291.
18 Wang Y, Sun L D, Xiang C J, et al. Corrosion Science, 2017, 124, 193.
19 Xiang C J, Sun L D, Wang Y, et al. Journal of Physical Chemistry C, 2017, 124, 193.
20 Gao J F, Huang X W, Xue H G, et al. Chemical Engineering Journal, 2017, 326(15), 443.
21 Luo X M, Wei M Y, Cao M. Journal of Materials Engineering, 2018, 46(5), 92(in Chinese).
罗晓民,魏梦媛,曹敏. 材料工程, 2018, 46(5), 92.
22 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40,546.
23 Khan A U, Malik N, Khan M, et al. Polymer, 2017, 126(22), 470.
24 Shohreh H, Alireza B, Mojtaba R. Powder Technology, 2018, 331(15), 28.
25 Khan A, Malik N, Khan M, et al. Bioprocess and Biosystems Enginee-ring, 2018, 41(1), 1.
26 Wang B J, Dong Z Q, Ma X H, et al. Journal of Chemical of Chinese Universities, 2017, 31(3), 679(in Chinese).
王宝娟, 董哲勤, 马晓华, 等. 高校化学工程学报, 2017, 31(3), 679.
[1] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[2] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[3] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[4] 梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
[5] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[6] 王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
[7] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[8] 钱志强,吴志坚,王世栋,张慧芳,刘海宁,叶秀深,李权. 镁合金超疏水表面的制备技术与应用研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 102-109.
[9] 高英力,代凯明,李学坤,马 路,何 倍. 超疏水沥青混凝土抗凝冰性能及评价[J]. 《材料导报》期刊社, 2017, 31(24): 63-68.
[10] 吉海燕,范亚敏,吴殿国,费 婷,黄济华,许 晖,李华明. 仿生超疏水聚丙烯/二氧化钛复合薄膜的构筑及性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 101-104.
[11] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[12] 屈孟男, 马利利, 何金梅, 袁明娟, 姚亚丽, 刘向荣. 特异润湿型油水分离材料的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 152-161.
[13] 高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
[14] 高英力, 代凯明, 黄 亮, 郑策策, 辛太磊. 超疏水-防覆冰技术在公路路面中的研究应用进展[J]. 材料导报, 2017, 31(1): 103-109.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed