Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3510-3516    https://doi.org/10.11896/j.issn.1005-023X.2018.20.004
  无机非金属及其复合材料 |
新型陶瓷基复合超疏水涂层的制备及其性能
高硕洪1,2, 刘敏1,2, 张小锋2, 邓春明2
1 广东工业大学材料与能源学院,广州 510006;
2 广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510650;
Preparation and Properties of New Ceramic Composite Superhydrophobic Coatings
GAO Shuohong1,2, LIU Min1,2, ZHANG Xiaofeng2, DENG Chunming2
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006;
2 The Key Laboratory of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510650;
下载:  全 文 ( PDF ) ( 5308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究开发新型超疏水涂层的制备方法,改善涂层的结构与性能,以Al2O3-40%TiO2(AT40)、PFA(全氟烷氧基乙烯基醚共聚物)粉末为原始材料,采用大气等离子喷涂(APS)技术,并调整电流、氩气流量等喷涂参数,在铝合金基体表面制备了两种不同的AT40/PFA复合超疏水涂层。利用相对应的测试仪器及分析手段对喷涂态涂层的相组成、显微结构、摩擦系数及基本性能等进行了表征分析。结果表明,两种涂层的相组成均为C20F42、Al2TiO5及少量的γ-Al2O3、α-Al2O3相;涂层表面均为圆形和椭圆形的粒状突起结构,其中突起结构的表面均存在类似荷叶表面结构的二元微纳米乳突结构,其表面粗糙度为9.3 μm和12.41 μm;所得涂层具有良好的综合性能,与水的静态接触角均达到了150°以上,滚动角为4~5°;在其他参数不变的情况下,随着电流的增大及氩气流量的减小,涂层中的陶瓷相含量增加,涂层的粗糙度、摩擦系数、显微硬度及结合强度均增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高硕洪
刘敏
张小锋
邓春明
关键词:  陶瓷基复合材料  超疏水涂层  大气等离子喷涂  疏水性能  微纳米乳突结构    
Abstract: In order to develop a novel method for preparing superhydrophobic coatings and improve the structure and properties of them, using Al2O3-40%TiO2(AT40) and PFA (polyfluoroalkoxy) powders as raw materials. Two different PFA/AT40 composite superhydrophobic coatings were prepared on the aluminum alloy substrate by atmospheric plasma spraying (APS) under diffe-rent current and argon flow rate. The phase composition, microstructure, friction coefficient and basic properties of them were cha-racterized. The results showed that the phase compositions are C20F42, Al2TiO5 and a small amount of γ-Al2O3, α-Al2O3 phase. The surface structure is composed of circular and oval granular structure, and micro-nano mastoid structure was found, which similar to the lotus leaf. The roughness is 9.3 μm and 12.41 μm. Both of them show comprehensive performance, and the static contact angle with water is above 150°, the rolling angle is 4—5°. Besides, the results indicated that current and argon are impact on the perfor-mance of coatings. In the case of other parameters unchanged, with the increase of current and the decrease of argon flow rate, the content of ceramic phase in the coating increases, it leads to roughness, friction coefficient, micro-hardness and adhesive strength increase.
Key words:  ceramic matrix composites    superhydrophobic coatings    atmospheric plasma spraying    hydrophobic property    micro-nano mastoid structure
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2017YFB0306100);广东省科学院项目(2017GDASCX-0202);广东省科技计划(201313050800031;201413050502008;2014B070706026;2013B061800053);广东省自然基金团队项目(2016A030312015)
作者简介:  高硕洪:男,1992年生,硕士研究生,研究方向为表面工程 E-mail:406301624@qq.com 刘敏:通信作者,男,教授,研究方向为表面工程 E-mail:liumin_gz@163.net
引用本文:    
高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
GAO Shuohong, LIU Min, ZHANG Xiaofeng, DENG Chunming. Preparation and Properties of New Ceramic Composite Superhydrophobic Coatings. Materials Reports, 2018, 32(20): 3510-3516.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.004  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3510
1 Cao J Y, Zhang H Y, Li J H, et al. Research progress and application of super-hydrophobic coating in the areas of aircraft and aerospace[J]. Chemical Engineer,2017(1):57(in Chinese).
曹京宜,张海永,李佳欢,等.超疏钢砂玉水涂层在航空航天领域研究进展与应用[J].化学工程师,2017(1):57.
2 Zhao Y S. Prepatation and anti-icing performances of superhydrophobic coating for insulators[D]. Chongqing: Chongqing University,2010(in Chinese).
赵玉顺.绝缘子超疏水涂层制备方法与防冰性能研究[D].重庆:重庆大学,2010.
3 Li J, Wang X W, Huang Z Y, et al. Research of preparation, antii-cing and anti-pollution of super hydrophobic insulation coations[J]. Transactions of China Electrotechnica Society,2017(16):61(in Chinese).
李剑,王湘雯,黄正勇,等.超疏水绝缘涂层制备与防冰、防污研究现状[J].电工技术学报,2017(16):61.
4 Yang Q, Luo C Z, Tan S, et al. Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J]. China Surface Engineering,2016,29(4):10(in Chinese).
杨钦,罗荘竹,谭生,等.超疏水自清洁涂层防结冰技术的研究进展[J].中国表面工程,2016,29(4):10.
5 Wei Y, Li J, Lu M, et al. Investigation on insulation performance of insulators coated with super-hydrophobic coating in artificial fog-haze environment[J]. High Voltage Engineering,2017(7):2316(in Chinese).
魏远,李剑,卢明,等.人工雾霾环境下超疏水涂层绝缘子运行性能研究[J].高电压技术,2017(7):2316.
6 Zhan Y L, Li W, Li H, et al. Fabrication of PDMS/PTFE superhydrophobic coating by the method of hybrid curing and its self-clea-ning property[J]. Journal of Functional Materials,2017,48(6):6187(in Chinese).
占彦龙,李文,李宏,等.PDMS/PTFE杂合固化制备自清洁超疏水涂层[J].功能材料,2017,48(6):6187.
7 Jiang Q W. Perparation of superhydrophobic coating and study of application[D]. Guangzhou: South China University of Technology,2011(in Chinese).
江强维.超疏水涂层的制备及应用研究[D].广州:华南理工大学,2011.
8 Wang K, Hu N X, Xu G, et al. Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer[J]. Carbon,2011,49(5):1769.
9 Wang L, Liang J, He L. Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites[J]. Journal of Colloid & Interface Science,2014,435:75.
10 Jing M M. The research of self-cleaning fluorocarbon coating[D]. Nanchang: Nanchang Hangkong University,2012(in Chinese).
荆蒙蒙.自清洁氟碳涂料的研制[D].南昌:南昌航空大学,2012.
11 Ma M L, Hill R M. Superhydrophobic surfaces[J]. Current Opinion in Colloid & Interface Science,2006,11(4):193.
12 Galante A M S, Galante O L, Campos L L. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry[J]. Nuclear Instruments & Methods in Physics Research,2010,619(1-3):177.
13 Xia T, Li N, Wu Y, et al. Patterned superhydrophobic surface based on Pd-based metallic glass[J]. Applied Physics Letters,2012,101(8):413.
14 Li N, Xia T, Heng L, et al. Superhydrophobic Zr-based metallic glass surface with high adhesive force[J]. Applied Physics Letters,2013,102(25):2325.
15 Xie S J. Modifying of poly(tetrafluoroethylene) and its application[J]. New Chemical Materials,2002,30(11):26(in Chinese).
谢苏江.聚四氟乙烯的改性及应用[J].化工新型材料,2002,30(11):26.
16 Arturi K R, Jepsen H, Callsen J N, et al. Superhydrophilicity and durability of fluoropolymer-TiO2, coatings[J]. Progress in Organic Coatings,2016,90:132.
17 Qiu D Y, Wang H Y, Zhu Y J. Preparation and research of superhydrophobic composite coating contained TiO2 with corrosion and heat resistance[J]. New Chemical Materials,2017(5):253(in Chinese).
邸道远,汪怀远,朱艳吉.耐腐蚀耐热超疏水TiO2复合涂层制备与性能研究[J].化工新型材料,2017(5):253.
18 Serhal Z, Morvan J, Rezrazi M, et al. Fast method of qualitative analysis of PTFE particles in the Au-Co-PTFE composite coatings by infrared spectroscopy[J]. Surface & Coatings Technology,2001,140(2):166.
19 Liu C J, Feng X Y, Li N, et al. Super-hydrophobic Co3O4-loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification[J]. Surface & Coatings Technology,2016,309:1111.
20 He C X, Shen H P. Friction and wear properties of nanocrystalline Al2O3 filled-PTFE composites[J]. Tribology,2000,20(2):153(in Chinese).
何春霞,沈惠平.纳米Al2O3填充聚四氟乙烯摩擦磨损性能的研究[J].摩擦学学报,2000,20(2):153.
21 Xu L H. Study of abrasin behavior of composites consisted of PTFE polymer matix and ceramic particles[D]. Tianjin: Hebei University of Technology,2002(in Chinese).
徐立红.陶瓷颗粒填充PTFE聚合物基复合材料摩擦磨损特性研究[D].天津:河北工业大学,2002.
22 Gao D. Fabrication and performance of the polymer-based amphiphobic coatings[D]. Daqing: Northeast Petroleum University,2015(in Chinese).
高栋.聚合物基双疏涂层的制备与性能[D].大庆:东北石油大学,2015.
23 Chen G. Study on the tribological properties of PTFE-based compo-sites filled with inorganic fillers[D]. Hefei: Hefei University of Technology,2008(in Chinese).
陈刚.无机填料改性PTFE基复合材料摩擦学特性研究[D].合肥:合肥工业大学,2008.
24 Sidebottom M A, Pitenis A A, Junk C P, et al. Ultralow wear perfluoroalkoxy (PFA) and alumina composites[J]. Wear,2016,362-363:179.
25 Wang Y. The research progress of ultra hydrophobic surface coating preparation technology[J]. China Building Materials Science & Technology,2016,25(1):32(in Chinese).
王英.超疏水表面涂层制备技术的研究进展[J].中国建材科技,2016,25(1):32.
26 Han X Y, Chen X. PTFE anti-corrosion coating[J]. Plastics,2007,36(2):52(in Chinese).
韩晓燕,陈旭.聚四氟乙烯防腐蚀涂层的研究进展[J].塑料,2007,36(2):52.
27 Leroux F, Campagne C, Perwuelz A, et al. Fluorocarbon nano-coa-ting of polyester fabrics by atmospheric air plasma with aerosol[J]. Applied Surface Science,2008,254(13):3902.
28 Galante A M S, Galante O L, Campos L L. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry[J]. Nuclear Instruments & Methods in Physics Research,2010,619(1-3):177.
29 Deng C G, Deng C M, Liu M, et al. Air plasma and low pressure plasma sprayed alumina coatings[J]. Journal of Materials Enginee-ring,2008(5):48(in Chinese).
邓畅光,邓春明,刘敏,等.大气和低压等离子喷涂氧化铝涂层[J].材料工程,2008(5):48.
30 Sharifi N, Pugh M, Moreau C, et al. Developing hydrophobic and superhydrophobic TiO2, coatings by plasma spraying[J]. Surface & Coatings Technology,2016,289:29.31 Tang A, Wang M, Huang W, et al. Composition design of Ni-nano-Al2O3-PTFE coatings and their tribological characteristics[J]. Surface & Coatings Technology,2015,282:121.
32 Sharifi N, Ettouil F B, Moreau C, et al. Engineering surface texture and hierarchical morphology of suspension plasma sprayed TiO2 coa-tings to control wetting behavior and superhydrophobic properties[J]. Surface&Coatings Technology,2017,329:139.
33 Deng C M, Zhou K S, Liu M, et al. Properties of air plasma sprayed Al2O3-3%TiO2 coatings[J]. China Sueface Engineering,2010(1):19(in Chinese).
邓春明,周克崧,刘敏,等.大气等离子喷涂Al2O3-3%TiO2涂层的性能[J].中国表面工程,2010(1):19.
34 Mao J, Deng C M, Wu X B, et al. Microstructure and property of NiCoCrAlYTa coatings prepared by different thermal spraying technology[J]. Materials Review B: Research Papers,2017,31(8):51(in Chinese).
毛杰,邓春明,吴相彬,等.不同喷涂工艺下NiCoCrAlYTa涂层的显微结构和性能[J].材料导报:研究篇,2017,31(8):51.
35 Li N, Xu E, Liu Z, et al. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces[J]. Scientific Reports,2016,6:39388.
36 Wenzel R N. Resistance of solid surfaces to wetting by wetting by water [J]. Industrial & Engineering Chemistry Research,1936,28(8):988.
37 Baxter S, Cassie A B D. 8-The water repellency of fabrics and a new water repellency test[J]. Journal of the Textile Institute Transactions,1945,36(36):T67.
38 Cassie A B D, Baxter S Trans. Wettability of porous surfaces[J]. Journal of the Chemical Society Faraday Transactions,1944,40:546.
39 Cao F, Guan Z S, Li D X. Preparation of material surface structure similar to hydrophobic structure of lotus leaf[J]. Journal of Material Science and Engineering,2007,25(4):602(in Chinese).
曹丰,管自生,李东旭.类荷叶表面疏水结构的材料表面制备[J].材料科学与工程学报,2007,25(4):602.
[1] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[2] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[3] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[4] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[5] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed