Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 631-635    https://doi.org/10.11896/j.issn.1005-023X.2018.04.025
  材料研究 |
预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究
邓杨芳1, 范晓孟2, 张根1, 吴长波1, 钟燕1, 何爱杰1, 殷小玮2
1 中国航发四川燃气涡轮研究院,成都 610500;
2 西北工业大学超高温结构复合材料重点实验室,西安 710072
Anti-fatigue Performance Study of Pre-oxidized 2D-Cf/SiC Ceramic Matrix Composites
DENG Yangfang1, FAN Xiaomeng2, ZHANG Gen1, WU Changbo1, ZHONG Yan1, HE Aijie1, YIN Xiaowei2
1 AECC Sichuan Gas Turbine Establishment, Chengdu 610500;
2 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072;
下载:  全 文 ( PDF ) ( 2106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用在线销钉集成技术实现了二维Cf/SiC复杂构件的近尺寸成型,并考察预氧化Cf/SiC销钉集成构件的高周疲劳寿命及破坏模式。实验结果表明:Cf/SiC构件在不同激振加速度条件下均表现为由销钉断裂所引起的整体分层破坏,层板连接处为Cf/SiC构件的振动疲劳薄弱部位。通过ANSYS振动应力分析和微观组织分析可以推论出,疲劳试验时,裂纹容易沿着层板间的基体扩展,在基体开裂失效后,全部应力施加于销钉处,最终在疲劳应力作用下销钉发生断裂,导致构件整体分层破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓杨芳
范晓孟
张根
吴长波
钟燕
何爱杰
殷小玮
关键词:  碳纤维  陶瓷基复合材料  振动疲劳  失效模式    
Abstract: In this paper, the two-dimensional (2D) carbon fiber reinforced silicon carbide matrix composites (Cf/SiC) with complex shape were prepared by the online integration technique, and then the vibration fatigue test was carried out to investigate the vibration fatigue life and damage models after the pre-oxidation. The work demonstrated the delamination damage mode at different excitation acceleration, which was caused by the pin fracture, and the delamination joint is weak part of Cf/SiC. Through the analysis of ANSYS stress and microstructure, it can be concluded that, in the vibration test, cracks propagated easily in the interlayer matrix due to the lack of fiber toughening mechanism, and then the stress was concentrated on the pin with the failure of interlayer matrix. So the composites failed by the pin fracture and the interlayer delamination were damaged.
Key words:  carbon fiber    ceramic matrix composites    vibration fatigue    damage mode
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  V257  
基金资助: 国家自然科学基金(51372204)
作者简介:  邓杨芳:女,1986年生,硕士,工程师,研究方向为航空发动机材料应用及发动机构件失效分析 E-mail:fang_nwpu@163.com
引用本文:    
邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
DENG Yangfang, FAN Xiaomeng, ZHANG Gen, WU Changbo, ZHONG Yan, HE Aijie, YIN Xiaowei. Anti-fatigue Performance Study of Pre-oxidized 2D-Cf/SiC Ceramic Matrix Composites. Materials Reports, 2018, 32(4): 631-635.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.025  或          http://www.mater-rep.com/CN/Y2018/V32/I4/631
1 Wang M, Dong Z G, Zhang X Y, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine[J].Aeronautical Manufacturing Technology,2014(6):10(in Chinese).
王鸣,董志国,张晓越,等.连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J].航空制造技术,2014(6):10.
2 Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2007,24(2):1(in Chinese).
张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1.
3 Imuta M, Gotoh J. Development of high temperature materials including CMCs for space application[J].Key Engineering Materials,1999,164-165:439.
4 Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview[J].Composites Science and Technology,2004,64(2):155.
5 Ohnabe H, Masaki S, Onozuka M, et al. Potential application of ceramic matrix composites to aero-engine components[J].Compo-sites Part A,1999,30(4):489.
6 Voorde M H, Nedel M R. CMCs research in Europe and the future potential of CMCs in industry[C]//20. Annual Conference on Composites,Advanced Ceramics,Materials and Structures-B.Cocoa Beach,FL(United States),1996.
7 Zhang J, Luan X G, Cheng L F, et al. Damage evolution in 3D SiCf/SiC composites in fatigue-oxidation environment[J].Acta Materiae Composite Sinica,2009,26(5):120(in Chinese).
张钧,栾新刚,成来飞,等.疲劳氧化环境中3D SiCf/SiC复合材料损伤演变[J].复合材料学报,2009,26(5):120.
8 Yu X M, Zhou W C, Luo F, et al. Mechanical properties of SiC/SiC composites[J].Journal of Aeronautical Materials,2009,29(3):93(in Chinese).
于新民,周万城,罗发,等.SiC/SiC复合材料的力学性能[J].航空材料学报,2009,29(3):93.
9 Niu X B, Zhang C Y, Qiao S R, et al. Compressive strength of 2D-C/SiC composite at high temperature in air[J].Journal of Aeronautical Materials,2011,31(6):92(in Chinese).
牛学宝,张程煜,乔生儒,等.2D-C/SiC复合材料在空气中的高温压缩强度研究[J].航空材料学报,2011,31(6):92.
10 Xu Y D, Cheng L F, Zhang L T. Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J].Carbon,1999,37:1179.
11 Morscher G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J].Compo-sites Science and Technology,2004,64(9):1311.
12 Shi F M, Yin X W, Fan X W, et al. A new route to fabricate SiB4 modified C/SiC composites[J].Journal of the European Ceramic Society,2010,30:1995.
13 Cao X Y, Yin X W, Ma X K, et al. Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thickness[J].Ceramics International,2015,41(1):1695.
14 Zhang W H, Cheng L F, Zhang L T. Preparation and anti-oxidation behavior of Si-C-B self-healing coating on C/SiC composite[J].Journal of Inorganic Materials,2008,23(4):774(in Chinese).
张伟华,成来飞,张立同.C/SiC复合材料表面Si-C-B自愈合涂层的制备与抗氧化行为[J].无机材料学报,2008,23(4):774.
15 Guo H B, Wang B, Zhen W Q, et al. FEM calculation about tensile strength of 2D-C/SiC composites with circular holes[J].Acta Materiae Compositae Sinica,2014,31(2):448(in Chinese).
郭洪宝,王波,甄文强,等.2D-C/SiC复合材料开孔件拉伸强度有限元计算[J].复合材料学报,2014,31(2):448.
16 Cao X Y. Research on properties optimization of self-healing CMC-SiCs fabricated by liquid silicon infiltration[D].Xi’an:Northwestern Polytechnical University,2016(in Chinese).
曹晓雨.液硅渗透法制备自愈合CMC-SiCs及其性能优化[D].西安:西北工业大学,2016.
17 Hui M, Cheng L F. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber performs[J].Carbon,2009,47:1034.
18 Hou J T, Qiao S R, Han D, et al. Tension-tension fatigue damages of 2D-C/SiC notched specimens[J].Materials Review,2005,19(11):140(in Chinese).
侯军涛,乔生儒,韩栋,等.2D-C/SiC缺口试样的拉-拉疲劳损伤[J].材料导报,2005,19(11):140.
19 Zhu S, Mizuno M, Kagawa Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J].Composites Science and Technology,1999,59(6):833.
20 Wang K, Cheng Q Y, Zheng X, et al. Experiment investigation on the tension fatigue characteristics of plain woven C/SiC composite[J].Journal of Mechanical Strength,2010,32(1):130(in Chinese).
王锟,程起有,郑翔,等.平纹编织C/SiC复合材料拉-拉疲劳特性的试验研究[J].机械强度,2010,32(1):130.
[1] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[2] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[3] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[4] 高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
[5] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[6] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[7] 冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
[8] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[9] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[10] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[11] 贾建刚, 高昌琦, 刘第强, 季根顺, 薛向军, 郭铁明, 郝相忠. 表面镀Ni碳纤维增强Cu基复合材料的制备和表征[J]. 《材料导报》期刊社, 2018, 32(14): 2462-2466.
[12] 高 伟,赵广杰. 硝酸表面氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(10): 1688-1694.
[13] 田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
[14] 陈悦,朱锡,朱子旭,李华东. 含预裂缝复合材料缠绕圆柱壳轴压承载特性分析*[J]. 《材料导报》期刊社, 2017, 31(7): 150-154.
[15] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed