Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 631-635    https://doi.org/10.11896/j.issn.1005-023X.2018.04.025
  材料研究 |
预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究
邓杨芳1, 范晓孟2, 张根1, 吴长波1, 钟燕1, 何爱杰1, 殷小玮2
1 中国航发四川燃气涡轮研究院,成都 610500;
2 西北工业大学超高温结构复合材料重点实验室,西安 710072
Anti-fatigue Performance Study of Pre-oxidized 2D-Cf/SiC Ceramic Matrix Composites
DENG Yangfang1, FAN Xiaomeng2, ZHANG Gen1, WU Changbo1, ZHONG Yan1, HE Aijie1, YIN Xiaowei2
1 AECC Sichuan Gas Turbine Establishment, Chengdu 610500;
2 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072;
下载:  全 文 ( PDF ) ( 2106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用在线销钉集成技术实现了二维Cf/SiC复杂构件的近尺寸成型,并考察预氧化Cf/SiC销钉集成构件的高周疲劳寿命及破坏模式。实验结果表明:Cf/SiC构件在不同激振加速度条件下均表现为由销钉断裂所引起的整体分层破坏,层板连接处为Cf/SiC构件的振动疲劳薄弱部位。通过ANSYS振动应力分析和微观组织分析可以推论出,疲劳试验时,裂纹容易沿着层板间的基体扩展,在基体开裂失效后,全部应力施加于销钉处,最终在疲劳应力作用下销钉发生断裂,导致构件整体分层破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓杨芳
范晓孟
张根
吴长波
钟燕
何爱杰
殷小玮
关键词:  碳纤维  陶瓷基复合材料  振动疲劳  失效模式    
Abstract: In this paper, the two-dimensional (2D) carbon fiber reinforced silicon carbide matrix composites (Cf/SiC) with complex shape were prepared by the online integration technique, and then the vibration fatigue test was carried out to investigate the vibration fatigue life and damage models after the pre-oxidation. The work demonstrated the delamination damage mode at different excitation acceleration, which was caused by the pin fracture, and the delamination joint is weak part of Cf/SiC. Through the analysis of ANSYS stress and microstructure, it can be concluded that, in the vibration test, cracks propagated easily in the interlayer matrix due to the lack of fiber toughening mechanism, and then the stress was concentrated on the pin with the failure of interlayer matrix. So the composites failed by the pin fracture and the interlayer delamination were damaged.
Key words:  carbon fiber    ceramic matrix composites    vibration fatigue    damage mode
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  V257  
基金资助: 国家自然科学基金(51372204)
作者简介:  邓杨芳:女,1986年生,硕士,工程师,研究方向为航空发动机材料应用及发动机构件失效分析 E-mail:fang_nwpu@163.com
引用本文:    
邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
DENG Yangfang, FAN Xiaomeng, ZHANG Gen, WU Changbo, ZHONG Yan, HE Aijie, YIN Xiaowei. Anti-fatigue Performance Study of Pre-oxidized 2D-Cf/SiC Ceramic Matrix Composites. Materials Reports, 2018, 32(4): 631-635.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.025  或          https://www.mater-rep.com/CN/Y2018/V32/I4/631
1 Wang M, Dong Z G, Zhang X Y, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine[J].Aeronautical Manufacturing Technology,2014(6):10(in Chinese).
王鸣,董志国,张晓越,等.连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J].航空制造技术,2014(6):10.
2 Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2007,24(2):1(in Chinese).
张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1.
3 Imuta M, Gotoh J. Development of high temperature materials including CMCs for space application[J].Key Engineering Materials,1999,164-165:439.
4 Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview[J].Composites Science and Technology,2004,64(2):155.
5 Ohnabe H, Masaki S, Onozuka M, et al. Potential application of ceramic matrix composites to aero-engine components[J].Compo-sites Part A,1999,30(4):489.
6 Voorde M H, Nedel M R. CMCs research in Europe and the future potential of CMCs in industry[C]//20. Annual Conference on Composites,Advanced Ceramics,Materials and Structures-B.Cocoa Beach,FL(United States),1996.
7 Zhang J, Luan X G, Cheng L F, et al. Damage evolution in 3D SiCf/SiC composites in fatigue-oxidation environment[J].Acta Materiae Composite Sinica,2009,26(5):120(in Chinese).
张钧,栾新刚,成来飞,等.疲劳氧化环境中3D SiCf/SiC复合材料损伤演变[J].复合材料学报,2009,26(5):120.
8 Yu X M, Zhou W C, Luo F, et al. Mechanical properties of SiC/SiC composites[J].Journal of Aeronautical Materials,2009,29(3):93(in Chinese).
于新民,周万城,罗发,等.SiC/SiC复合材料的力学性能[J].航空材料学报,2009,29(3):93.
9 Niu X B, Zhang C Y, Qiao S R, et al. Compressive strength of 2D-C/SiC composite at high temperature in air[J].Journal of Aeronautical Materials,2011,31(6):92(in Chinese).
牛学宝,张程煜,乔生儒,等.2D-C/SiC复合材料在空气中的高温压缩强度研究[J].航空材料学报,2011,31(6):92.
10 Xu Y D, Cheng L F, Zhang L T. Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J].Carbon,1999,37:1179.
11 Morscher G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J].Compo-sites Science and Technology,2004,64(9):1311.
12 Shi F M, Yin X W, Fan X W, et al. A new route to fabricate SiB4 modified C/SiC composites[J].Journal of the European Ceramic Society,2010,30:1995.
13 Cao X Y, Yin X W, Ma X K, et al. Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thickness[J].Ceramics International,2015,41(1):1695.
14 Zhang W H, Cheng L F, Zhang L T. Preparation and anti-oxidation behavior of Si-C-B self-healing coating on C/SiC composite[J].Journal of Inorganic Materials,2008,23(4):774(in Chinese).
张伟华,成来飞,张立同.C/SiC复合材料表面Si-C-B自愈合涂层的制备与抗氧化行为[J].无机材料学报,2008,23(4):774.
15 Guo H B, Wang B, Zhen W Q, et al. FEM calculation about tensile strength of 2D-C/SiC composites with circular holes[J].Acta Materiae Compositae Sinica,2014,31(2):448(in Chinese).
郭洪宝,王波,甄文强,等.2D-C/SiC复合材料开孔件拉伸强度有限元计算[J].复合材料学报,2014,31(2):448.
16 Cao X Y. Research on properties optimization of self-healing CMC-SiCs fabricated by liquid silicon infiltration[D].Xi’an:Northwestern Polytechnical University,2016(in Chinese).
曹晓雨.液硅渗透法制备自愈合CMC-SiCs及其性能优化[D].西安:西北工业大学,2016.
17 Hui M, Cheng L F. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber performs[J].Carbon,2009,47:1034.
18 Hou J T, Qiao S R, Han D, et al. Tension-tension fatigue damages of 2D-C/SiC notched specimens[J].Materials Review,2005,19(11):140(in Chinese).
侯军涛,乔生儒,韩栋,等.2D-C/SiC缺口试样的拉-拉疲劳损伤[J].材料导报,2005,19(11):140.
19 Zhu S, Mizuno M, Kagawa Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J].Composites Science and Technology,1999,59(6):833.
20 Wang K, Cheng Q Y, Zheng X, et al. Experiment investigation on the tension fatigue characteristics of plain woven C/SiC composite[J].Journal of Mechanical Strength,2010,32(1):130(in Chinese).
王锟,程起有,郑翔,等.平纹编织C/SiC复合材料拉-拉疲劳特性的试验研究[J].机械强度,2010,32(1):130.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[3] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[4] 邓云飞, 赵鑫, 王中山, 冯正兴. 鞘翅仿生铝合金波纹夹芯结构冲击失效机理及吸能特性研究[J]. 材料导报, 2024, 38(24): 22080103-8.
[5] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[6] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[7] 朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
[8] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[9] 贾峰峰, 俄松峰, 陈珊珊, 宁逗逗, 黄吉振, 陆赵情. 碳纤维湿法造纸工艺及碳纤维纸基功能材料的研究进展[J]. 材料导报, 2023, 37(8): 21070135-9.
[10] 潘星辰, 郜红合, 陈旭辉, 朱子兴. 乘用车座椅材料加工工艺与结构设计[J]. 材料导报, 2023, 37(22): 22090290-7.
[11] 李美琪, 李晓飞, 王瑞涛, 聂林峰, 张润, 张冬海, 陈运法. 碳纤维增强聚合物基复合材料界面特性研究进展[J]. 材料导报, 2023, 37(20): 22030247-12.
[12] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[13] 向天意, 李端, 李俊生, 王衍飞, 万帆, 刘荣军. 高温电磁透波材料的研究进展[J]. 材料导报, 2023, 37(18): 22090029-11.
[14] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[15] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed