Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 22080103-8    https://doi.org/10.11896/cldb.22080103
  金属与金属基复合材料 |
鞘翅仿生铝合金波纹夹芯结构冲击失效机理及吸能特性研究
邓云飞*, 赵鑫, 王中山, 冯正兴
中国民航大学航空工程学院,天津 300300
Study on Impact Failure Mechanism and Energy Absorption Characteristics of Elytron Bio-inspired Aluminum Corrugated Sandwich Plate
DENG Yunfei*, ZHAO Xin, WANG Zhongshan, FENG Zhengxing
College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 7925KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究一种由昆虫鞘翅启发的仿生波纹夹芯结构抗弹体的冲击性能,使用有限元软件ABAQUS建立刚性弹体冲击2A12-T4波纹板的数值仿真模型,分析弹体头部形状和冲击位置对其损伤特性及耗能的影响。结果表明,仿生波纹夹芯结构不同位置对弹体抗冲击性能存在差异。节点及基座位置对卵形头弹体的抗冲击性能最好,而中间位置对平头弹体表现出更好的抗冲击能力。平头弹体冲击下,波纹板抗冲击性能受冲击位置的影响最大,其次是半球形头弹体,而卵形头弹体冲击下,波纹板的抗冲击性能较为均衡,受冲击位置的影响较小。此外,波纹板的损伤模式及耗能分布情况均受到冲击位置与弹体头部形状的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓云飞
赵鑫
王中山
冯正兴
关键词:  仿生结构  失效模式  弹道极限速度  冲击    
Abstract: To study the impact resistance of a bionic corrugated sandwich structure inspired by insectelytron, numerical models of rigid projectile impacting 2A12-T4 corrugated plate were established using the finite element software ABAQUS, and validation was performed to analyze the effects of projectile nose shape and impact position on its damage characteristics and energy dissipation. The results show that the impact resis-tance of corrugated plate with impact positions are significant different, the node and base positions have the best impact resistance to ogival-nosed projectile, while the middle position has the best impact resistance to blunt-nosed projectile. The impact resistance of the corrugated plate is most affected by the impact position under the blunt-nosed projectile, followed by the hemispherical-nosed projectile, while the different positions of the corrugated plate show more balanced impact resistance under the ogival-nosed projectile. In addition, the damage pattern and energy dissipation distribution of the corrugated plate are affected by the impact position and the shape of the projectile nose.
Key words:  bionic structure    failure mode    ballistic limit velocity    impact
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TG156  
基金资助: 国家自然科学基金(11702317);中央高校基本科研业务费项目(3122022045)
通讯作者:  * 邓云飞,博士,中国民航大学副教授。主要从事航空器结构强度适航技术研究,重点研究材料和结构冲击动力学的实验与仿真技术,在国内外重要期刊发表文章60多篇,主持和参与10多项国家级及省部级项目。 yfdeng@cauc.edu.cn   
引用本文:    
邓云飞, 赵鑫, 王中山, 冯正兴. 鞘翅仿生铝合金波纹夹芯结构冲击失效机理及吸能特性研究[J]. 材料导报, 2024, 38(24): 22080103-8.
DENG Yunfei, ZHAO Xin, WANG Zhongshan, FENG Zhengxing. Study on Impact Failure Mechanism and Energy Absorption Characteristics of Elytron Bio-inspired Aluminum Corrugated Sandwich Plate. Materials Reports, 2024, 38(24): 22080103-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080103  或          http://www.mater-rep.com/CN/Y2024/V38/I24/22080103
1 Cui T N, Zhang J H, Li K K, et al. Journal of Applied Mechanics, 2022, 89(2), 021006.
2 Zhang J J, Lu G X, Zhang Y, et al. International Journal of Impact Engineering, 2021, 156, 103925.
3 Mei J, Liu J Y, Zhang M G, et al. International Journal of Mechanical Sciences, 2022, 232, 107649.
4 Liu Y, Wang B C, Yan J B, et al. Acta Armamentarii, 2023, 44(7), 1938(in Chinese).
刘彦, 王百川, 闫俊伯, 等. 兵工学报, 2023, 44(7), 1938.
5 Yang X F, Ma J X, Shi Y L, et al. Materials and Design, 2017, 135, 275.
6 Zhang X C, An C C, Shen Z F, et al. Materials Today Communications, 2020, 23, 100918.
7 Zhang X C, Liu N N, An C C, et al. Defence Technology, 2023, 22, 99.
8 Zhang X C, Dong S J, An C C, et al. International Journal of Applied Mechanics, 2022, 14(1), 2150127.
9 Yang Z X, Yu N, Liu Z H. Acta Materiae Compositae Sinica, 2015, 32(3), 848 (in Chinese).
杨志贤, 于娜, 刘泽华. 复合材料学报, 2015, 32(3), 848.
10 Guo C, Li D, Lu Z Y, et al. Chinese Science Bulletin, 2014, 59(26), 3341.
11 Meng L, Liang H L, Yu H C, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 170.
12 Deng Y F, Jia H R, Li J F. Materials Today Communications, 2022, 30, 103118.
13 Børvik T, Dey S, Clausen A H. International Journal of Impact Engineering, 2009, 36, 948.
14 Gupta P K, Iqbal M A, Mohammad Z. International Journal of Impact Engineering, 2017, 110, 85.
15 Børvik T, Hopperstad O S, Berstad T, et al. European Journal of Mechanics/A Solids, 2001, 20(5), 685.
16 Zhang W, Wei G, Xiao X K. Acta Armamentarii, 2013, 34(3), 276 (in Chinese).
张伟, 魏刚, 肖新科. 兵工学报, 2013, 34(3), 276.
17 Recht R F, Ipson T W. Journal of Applied Mechanics, 1963, 30(3), 384.
18 Hu J, An J D. Journal of Mechanical Strength, 2022, 44(1), 68 (in Chinese).
胡静, 安静丹. 机械强度, 2022, 44(1), 68.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[3] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[4] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[5] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[6] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[7] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[8] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[9] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[10] 李姝姝, 程鹏飞, 马应霞, 李广全. SEBS与β-NAs对PP的协同增韧作用及增韧机理研究[J]. 材料导报, 2024, 38(12): 23050100-8.
[11] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[12] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[13] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[14] 温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
[15] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed