Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23050197-5    https://doi.org/10.11896/cldb.23050197
  无机非金属及其复合材料 |
氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用
张晓君1, 武佳龙1,2, 乔楠3, 于大禹1, 孙墨杰1, 陈景2,*
1 东北电力大学化学工程学院,吉林 吉林 132012
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
3 东北电力大学建筑工程学院,吉林 吉林 132012
Nitrogen Doped Lignin-based Carbon Quantum Dots for Detection of Hypochlorite Ion
ZHANG Xiaojun1, WU Jialong1,2, QIAO Nan3, YU Dayu1, SUN Mojie1, CHEN Jing2,*
1 School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
2 Ningbo Institute of Materials Technology& Engineering, Ningbo 315201, Zhejiang, China
3 School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin,China
下载:  全 文 ( PDF ) ( 3283KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用三聚氰胺提供氮源,对碳量子点(CQDs)进行氮掺杂,利用一步水热法制备氮掺杂木质素基碳量子点(N-CQDs)。通过氮掺杂形成共轭体系并引入氨基,达到提高其荧光强度的目的。对N-CQDs进行表征和测试,结果表明N-CQDs的平均粒径为2.7 nm,由许多官能团构成,如氨基、羟基、羧基、醚键、碳氮单键、碳氮双键、以及苯环结构等。其最佳激发、发射波长分别为400 nm、500 nm,紫外可见光谱中位于260 nm处的吸收峰是酶解木质素的C=O键与苯环结构的π-π*共轭吸收峰和来自三聚氰胺C=N键的π-π*共轭吸收峰,在315 nm处的吸收峰归因于酶解木质素C=O键或苯环的n-π*跃迁,以及三聚氰胺的C-N键和C=N键的n-π*跃迁。将N-CQDs应用于离子检测,其对次氯酸根(ClO-)有猝灭作用,对ClO-具有特异性检测,检测限为1.21 μmol/L。N-CQDs可以成功进入活细胞,对活体细胞无害,并能观察到细胞质中的亮绿色荧光。N-CQDs具有良好的次氯酸根离子检测效果和荧光效应,且对细胞无毒性,在离子检测和医疗方面具有一定的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓君
武佳龙
乔楠
于大禹
孙墨杰
陈景
关键词:  碳量子点  氮掺杂  ClO-检测  木质素  细胞    
Abstract: Using melamine as a nitrogen source, carbon quantum dots (CQDs) were doped with nitrogen. Nitrogen doped lignin-based carbon quantum dots (N-CQDs) were prepared through a one-step hydrothermal method. Doping nitrogen formed conjugation systems, introduced amino groups, thus improved the fluorescence intensity. Characterization and test of N-CQDs were performed. The average particle size of N-CQDs was 2.7 nm. N-CQDs were composed of many functional groups, including amino, hydroxyl, carboxyl, ether bonds, single bonds between carbon and nitrogen, double bonds between carbon and nitrogen, and benzene ring structures. The optimum excitation and emission wavelength were 400 nm and 500 nm respectively. In the UV-Vis absorption spectra, the absorption peak at 260 nm was due to π-π* leaps of C=O bond in enzymatic hydrolysis lignin and benzene ring, π-π* leaps of C=N bond in melamine. The absorption peak at 315 nm was due to n-π* leaps of C=O bond in enzymatic hydrolysis lignin or benzene ring, n-π* leaps of C-N bond and C=N bond in melamine. N-CQDs were applied to anion detection, having a sudden inactivation effect on hypochlorite ion (ClO-). N-CQDs had specific detection for ClO- and the detection limits were 1.21 μmol/L. N-CQDs could enter live cells successfully and N-CQDs, is harmless to cells, and bright green fluorescence in the cytoplasm of cells could be observed. Based on the good detection for ClO-, fluorescence effect and harmlessness to cells, N-CQDs have some potential applications in the ion detection and medical field.
Key words:  carbon quantum dots    nitrogen doped    ClO- detection    lignin    cell
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  O69  
基金资助: 吉林省科技发展计划项目(20190902014TC;20210201058GX)
通讯作者:  * 陈景,中国科学院宁波材料技术与工程研究所研究员、博士研究生导师。2008年于东南大学材料物理与化学专业取得博士学位,2010年到中科院宁波材料所工作至今。主要从事生物基聚氨酯弹性体及发泡材料的设计合成、改性应用等研究工作。已在Chemical Engineering Journal、Science of the Total Enviroment、Separation and Purification Technology、ACS Sustainable Chemistry & Engineering、ChemSusChem等期刊上发表80余篇学术论文,他引2 300多次,H=28。申请国家发明专利20项,授权15项。 chenjing@nimte.ac.cn   
作者简介:  张晓君,东北电力大学高级实验师、硕士研究生导师。2014年在吉林大学物理化学专业取得博士学位,主要从事功能材料的制备及应用。以第一作者发表论文10余篇,授权发明专利2项。
引用本文:    
张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
ZHANG Xiaojun, WU Jialong, QIAO Nan, YU Dayu, SUN Mojie, CHEN Jing. Nitrogen Doped Lignin-based Carbon Quantum Dots for Detection of Hypochlorite Ion. Materials Reports, 2024, 38(24): 23050197-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050197  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23050197
1 Zhao Y Y, Fan J Y, Wei J, et al. Materials reports, 2023, 37(5), 21060126 (in Chinese).
赵艳艳, 范敬煜, 魏景, 等. 材料导报, 2023, 37(5), 21060126.
2 Cao A, Sang L, Yu Z, et al. Catalysis Science & Technology, 2022, 12(6), 1859.
3 Abbas A, Abbas S, Tabish T A, et al. Journal of Environmental Chemical Engineering, 2021, 9(5), 106154.
4 Liu Q H, He Y F, Lang L N, et al. Chemical Industry and Engineering Progress, 2018, 37(10), 3936 (in Chinese).
刘清浩, 何艳飞, 梁丽娜, 等. 化工进展, 2018, 37(10), 3936.
5 Chuaicham C, Sekar K, Balakumae V, et al. Environmental Research, 2022, 212, 113635.
6 Singh H, Singh S, Bhardwaf S K, et al. Food Chemistry, 2022, 393, 133374.
7 Guo Y, Wang R, Wei C, et al. Food Chemistry, 2023, 415, 135749.
8 Hsieh C T, Sung P Y, Gandomi Y A, et al. Chemosphere, 2023, 318, 137926.
9 Mozdbar A, Nouralishahi A, Fatemi S, et al. Journal of Water Process Engineering, 2023, 51, 103465.
10 Zhao F, Li X, Zuo M, et al. Journal of Environmental Chemical Engineering, 2023, 11(2), 109487.
11 Latief U, Islam S U, Khan M S. Journal of Alloys and Compounds, 2023, 941, 168985.
12 Zhang S, Tian Y, Liu M, et al. Materials Chemistry Frontiers, 2022, 6(7), 973.
13 Chen J, Wu J, Zhong Y, et al. Separation and Purification Technology, 2023, 311, 123284.
14 Wu J, Ma X, Gnanasekar P, et al. Science of the Total Environment, 2023, 860, 160276.
15 Ju J, Chen W. Biosensors and Bioelectronics, 2014, 58, 219.
16 Shen D, Long Y, Wang J, et al. Nanoscale, 2019, 11(13), 5998.
17 Qiang S, Zhang L, Li Z, et al. Antioxidants, 2022, 11(12), 2475.
18 Zhong H, Wu Y X, Yu S, et al. Analytical Chemistry, 2021, 93(14), 5691.
19 Zhou W, Liu C, Fan J, et al. Journal of Alloys and Compounds, 2022, 920, 165963.
20 Zhu S, Zhang Q, Pan Q, et al. Applied Surface Science, 2022, 584, 152567.
21 Zhu L, Shen D, Wang Q, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56465.
22 Zhu L, Shen D, Hong L. Journal of Colloid and Interface Science, 2022, 617, 557.
23 Gorne A L, Sholz T, Kobertz D, et al. Inorganic Chemistry, 2021, 60(20), 15069.
24 Hashemi F, Heidari F, Mohajeri N, et al. Photochemistry and Photobio-logy, 2020, 96(5), 1032.
25 Ghafarloo A, Sabzi R E, Samadi N, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112197.
26 Wang C, Hu T, Wen Z, et al. Journal of Colloid and Interface Science, 2018, 521, 33.
27 Yang J, Jin X, Cheng Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(39), 13206.
28 Jiang Q, Jing Y, Ni Y, et al. Microchemical Journal, 2020, 157, 105111.
[1] 王迎迎, 刘永欣, 沈倩, 付婵, 余昌敏. 磁分离技术和纳米金比色法用于嗜碱性粒细胞活化试验研究[J]. 材料导报, 2024, 38(9): 23030124-7.
[2] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[3] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[4] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[5] 马彭逸, 李琛, Ouaskioud Oumaima, 任丽. 胶原蛋白促进成骨细胞在磷灰石基质上增殖和分化[J]. 材料导报, 2024, 38(11): 23050130-11.
[6] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[7] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[8] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[9] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[10] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[11] 王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
[12] 刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
[13] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[14] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[15] 韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed