Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21060126-8    https://doi.org/10.11896/cldb.21060126
  无机非金属及其复合材料 |
碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究
赵艳艳1,*, 范敬煜1, 魏景1, 施欢贤2
1 商洛学院生物医药与食品工程学院,陕西 商洛 726000
2 陕西中医药大学药学院,陕西 咸阳 712046
Highly Efficient Photocatalytic Degradation of RhB and Inactivation of E. coli with CQDs/Bi2WO6 Composite and Its Enhanced Visible Light Photocatalytic Activity
ZHAO Yanyan1,*, FAN Jingyu1, WEI Jing1, SHI Huanxian2
1 College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo 726000, Shaanxi, China
2 School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
下载:  全 文 ( PDF ) ( 21665KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过碳量子点(Carbon quantum dots,CQDs)掺杂制备得到了稳定性好、催化活性高的碳量子点/钨酸铋(CQDs/Bi2WO6)复合材料,采用红外光谱、X射线衍射、光电子能谱、扫描电镜、透射电镜和固体紫外-可见漫反射光谱等手段对材料的结构进行了表征,通过光催化降解罗丹明B(RhB)评价催化剂的活性,并考察其在可见光照射下杀灭大肠杆菌(Escherichia coli,E.coli)的性能及对应的光催化活性增强机理。结果表明,CQDs掺杂能够有效提高材料的催化活性,CQDs/Bi2WO6复合材料在光照40 min后对RhB的降解率高达99.98%,且其在光照6 h后能够有效杀灭约44.82%的大肠杆菌。机理研究表明,空穴(h+)是催化过程的主要活性物种,电子(e-)是次要活性物种。光催化过程中还产生了大量的超氧自由基(·O2-)和羟基自由基(·OH),它们共同参与氧化-还原反应,起到降解有机染料并杀灭大肠杆菌的作用。本研究对光催化处理水中有机污染物及杀灭水中致病微生物有重要的借鉴作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵艳艳
范敬煜
魏景
施欢贤
关键词:  光催化  碳量子点  钨酸铋  降解  杀菌    
Abstract: In this work, a CQDs/Bi2WO6 composite with good stability and outstanding photocatalytic activity was successfully prepared by doping CQDs. Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron microscopy(SEM), transmission electron microscopy(TEM)and UV-visible diffuse reflection(UV-vis)were employed to characterize the prepared photocatalysts. The photocatalytic activity of CQDs/Bi2WO6 composite was evaluated by photodegradation of RhB, and the visible light driven photocatalytic inactivation of E. coli and the possible bactericidal mechanisms were also studied. The results indicated that the CQDs doping can effectively improve the photocatalytic activity of Bi2WO6. About 99.98% of RhB could be degraded with CQDs/Bi2WO6 composite under visible light irradiation for 40 min, and approximately 44.82% of E. coli can be inactivated under visible light irradiation for 6 h. Mechanism studies showed that h+ was the major active species, while e- was the minor active species. A large number of ·O2- and ·OH were produced during the photocatalytic process, which participated in the oxidation-reduction reaction to degrade organic dyes and inactivate E. coli. This work provi-ded an important reference to wastewater photocatalytic treatment towards pathogenic bacteria and organic pollutant.
Key words:  photocatalytic    carbon quantum dots    bismuth tungstate    degradation    inactivation
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TQ203  
基金资助: 陕西省自然科学基金(2021JQ-838);陕西省教育厅2020年度重点项目(20JY009);商洛学院张生勇院士科研项目(20YSZX01)
通讯作者:  *赵艳艳,商洛学院生物学院副教授。于2019年6月毕业于西北大学化工学院,获得工科博士学位。主要研究方向为光催化纳米材料的制备及环境化学研究,在国内外重要期刊发表文章20多篇。ityjd@163.com   
引用本文:    
赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
ZHAO Yanyan, FAN Jingyu, WEI Jing, SHI Huanxian. Highly Efficient Photocatalytic Degradation of RhB and Inactivation of E. coli with CQDs/Bi2WO6 Composite and Its Enhanced Visible Light Photocatalytic Activity. Materials Reports, 2023, 37(5): 21060126-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060126  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21060126
1 Yao X, Tang X, Wang X, et al. Materials Reports, 2021, 35(1), 01105(in Chinese).
姚希燕, 唐晓宁, 王晓楠, 等. 材料导报, 2021, 35(1), 01105.
2 Shi H, Wang C, Zhao Y, et al. Applied Catalysis B:Environmental, 2019, 254, 403.
3 Li J, Yin Y, Liu E, et al. Journal of Hazardous Materials, 2017, 321, 183.
4 Matsunaga T, Tomoda R, Nakajima T, et al. Fems Microbiology Letters, 1985, 29(1-2), 211.
5 Long Y, Wang Y, Zhang D, et al. Journal of Colloid and Interface Science, 2016, 481, 47.
6 Zhao Y, Liang X, Hu X, et al. Journal of Colloid and Interface Science, 2021, 589, 336.
7 Wang C, Shi H, Yang M, et al. Materials Research Bulletin, 2020, 124, 110730.
8 He Y, Xu L, Xia Y, et al. Chemical Industry and Engineering Progress, 2021, 40(2), 908(in Chinese).
何源, 许磊, 夏仡, 等. 化工进展, 2021, 40(2), 908.
9 Zhao C, Liao Z, Liu W, et al. Journal of Hazardous Materials, 2020, 381, 120957.
10 Rashmita D, Rajib B, Panchanan P. Materials Today Chemistry, 2018, 8, 96.
11 Ankit T, Kumud M T, Narendra S, et al. RSC Advances, 2016, 6, 72423.
12 Zhao Y, Liang X, Wang Y, et al. Journal of Colloid and Interface Science, 2018, 523, 7.
13 Sara S, Aziz H Y, Solmaz F, et al. Separation and Purification Technology, 2020, 250, 117179.
14 Li P, Zhou Z, Wang Q, et al. Journal of the American Chemical Society, 2020, 142, 12430.
15 Li S, Wang Q. Journal of Liaocheng University(Natural Science Edition), 2019, 32(3), 46(in Chinese).
李沛珅, 王强. 聊城大学学报(自然科学版), 2019, 32(3), 46.
[1] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[2] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[3] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[4] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[5] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[6] 唐飞, 蔡文宇, 陈飞, 朱晨, 刘成宝, 陈志刚. g-C3N4/过渡金属硫化物复合材料的结构设计、合成及光催化应用[J]. 材料导报, 2023, 37(1): 20100135-9.
[7] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[8] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[9] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[10] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[11] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[12] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[13] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[14] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[15] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed