Process Optimization for Ball Milling-assisted Degradation of Sodium Alginate as Well as Its Structure and Property
LI Zhengyue1,2,3, LI Dongze1,2, SUN Xiuying1,2, CAI Peiwen1,2, LIAO Yuqing1,2, CHEN Xiuqiong1,2, YAN Huiqiong1,2,3, LIN Qiang1,2,3
1 Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China 2 Key Laboratory of Natural Polymer Functional Material of Haikou City , Haikou 571158, China 3 Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
Abstract: In order to promote the development and efficient utilization of seaweed resources, mechanical ball milling was used to assist the degradation of sodium alginate (SA) to obtain low molecular weight SA. Taking the mass average molecular weight (MW) of the degraded SA as the response value, the Box-Behnken design was used to build the model and analyze the effects of ball milling time, CuCl2 concentration and solution pH on the response value. Furthermore, the structure and performance of the degraded SA were characterized by gel chromatography (GPC), infrared spectrometer (FTIR), nuclear magnetic resonance spectrometer (1H-NMR), thermos-gravimetric analyzer (TGA) and X-ray diffracto-meter (XRD). The experimental results showed that the relationship between the response value and three independent variables were in line with the quadratic model. The mathematical regression model had good predictability and the optimal conditions within the experimental ranges for the response value were forecasted to be 94.38 min for ball milling time, 4.00 mmol/L for CuCl2 concentration, and 1.43 for solution pH. Meanwhile, the structure and performance test results of the degraded SA showed that due to the strong oxidation of H2O2 and the coordination of Cu2+, the SA was degraded, the molecular weight reduced, the intramolecular hydrogen bond was destroyed, and the force weakened. As a result, part of the molecular skeleton structure had changed, forming a molecular lactone.
李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
LI Zhengyue, LI Dongze, SUN Xiuying, CAI Peiwen, LIAO Yuqing, CHEN Xiuqiong, YAN Huiqiong, LIN Qiang. Process Optimization for Ball Milling-assisted Degradation of Sodium Alginate as Well as Its Structure and Property. Materials Reports, 2022, 36(6): 21010003-6.
1 Doan H V, Tapingkae W, Moonmanee T, et al. Fish Shellfish Immunology, 2016, 55, 186. 2 Iwasaki K, Matsubara Y. Bioscience Biotechnology and Biochemistry, 2000, 64, 1067. 3 Liu Y, Jiang X L, Cui H, et al. Journal of Chromatography A, 2000, 884, 105. 4 Summa M, Russo D, Penna L, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 17. 5 Kazi G A S, Yamamoto O. Wound Medicine, 2019, 24(1), 18. 6 Zare-Gachi M, Daemi H, Mohammadi J, et al. Materials Science & Engineering C-Materials for Biological Applications, 2020, 107, 110321. 7 Varaprasad K, Jayaramudu T, Kanikireddy V, et al. Carbohydrate Polymers, 2020, 236, 116025. 8 Türe H. International Journal of Biological Macromolecules, 2019, 123, 878. 9 Yang Z, Li J P, Guan H S. Carbohydrate Polymers, 2004, 58, 115. 10 Choi S K, Choi Y S. Polymer Korea, 2011, 35, 444. 11 Bouhadir K H, Lee K Y, Alsberg E, et al. Biotechnology Techniques, 2001, 17, 945. 12 Li X, Xu A, Xie H, et al. Carbohydrate Polymers, 2010, 79(3), 660. 13 Tanioka S, Marsui Y, Irie T. Bioscience Biotechnology and Biochemistry, 1996, 60(12), 2001. 14 Peng Y X, Chen Q Y, Liu S J, et al. Materials Science and Technology, 2009, 17(1), 113(in Chinese). 彭秧锡, 陈启元, 刘士军, 等. 材料科学与工艺, 2009, 17(1), 113. 15 Yan H Q, Chen X Q, Feng M X, et al. Colloids and Surfaces B: Biointer-faces, 2019, 177, 112. 16 Yan H Q, Chen X Q, Bao C L, et al. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110983. 17 Feng S F, Ning G L, Li X, et al. China Powder Science and Technology, 2008, 14 (7), 193(in Chinese). 丰世凤, 宁桂玲, 李鑫, 等. 中国粉体技术, 2008, 14(7), 193. 18 Yin X Q, Yuan W, Lin Q, et al. Chinese Journal of Applied Chemistry, 2006(7), 729(in Chinese). 尹学琼, 袁文, 林强, 等. 应用化学, 2006(7), 729. 19 Taghizadeh M T, Bahadori A. Journal of Polymer Research, 2009, 16(5),545. 20 Yang H, Li C. Journal of Functional Materials, 2012, 43(2), 2881(in Chinese). 杨辉, 李聪. 功能材料, 2012, 43(2), 2881. 21 Li B, Tu Y Y, Mei X, et al. Journal of Chemical Engineering of Chinese Universities, 2010, 24(5), 897(in Chinese). 李博, 屠幼英, 梅鑫, 等. 高校化学工程学报, 2010, 24(5), 897. 22 Feng G D, Zhou Y H, Guo X X, et al. Journal of Cellulose Science and Technology, 2009, 17(4), 21(in Chinese). 冯国栋, 周永红, 郭晓昕, 等. 纤维素科学与技术, 2009, 17(4), 21. 23 Xie Q R, Tong Z F, Wei T Y, et al. Journal of Chemical Engineering of Chinese Universities, 2012, 26(5), 487(in Chinese). 谢清若, 童张法, 韦藤幼, 等. 高校化学工程学报, 2012, 26(5), 487. 24 Feng M X, Chen X Q, Lin L Q, et al. Fine Chemicals, 2018(11), 1871(in Chinese). 冯美西, 陈秀琼, 林良泉, 等. 精细化工, 2018(11), 1871. 25 Islam M S, Karim M R. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1-3), 135. 26 Chen X, Yan H, Sun W, et al. Polymer Bulletin, 2015, 72(12), 3097. 27 Lee P S, Yim S G, Choi Y, et al. Food Chemistry, 2012, 132(2), 992. 28 Kang H, Shu Y, Li Z, et al. Carbohydrate Polymers, 2014, 100, 158. 29 Qin Z, Ji L, Yin X, et al. Carbohydrate Polymers, 2014, 101, 947. 30 Ionita M, Pandele M A, Iovu H. Carbohydrate Polymers, 2013, 94, 339.